Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32396938

RESUMO

The connections between energy metabolism and stemness of hematopoietic stem cells (HSCs) at different developmental stages remain largely unknown. We herein generate a transgenic mouse line for the genetically encoded NADH/NAD+ sensor (SoNar) and demonstrate that there exist three distinct fetal liver hematopoietic cell populations according to the ratios of SoNar fluorescence. SoNar-low cells have an enhanced level of mitochondrial respiration, but similar glycolytic level to SoNar-high cells. Interestingly, 10% of SoNar-low cells are enriched for 65% of total immunophenotypical fetal liver HSCs (FL-HSCs) and contain approximately 5-fold greater functional HSCs than that of SoNar-high counterparts. SoNar can monitor sensitively the dynamic changes of energy metabolism in HSCs both in vitro and in vivo. Mechanistically, STAT3 transactivates MDH1 to sustain the malate-aspartate NADH shuttle activity and the HSC self-renewal and differentiation. We reveal an unexpected metabolic program of FL-HSCs and provide a powerful genetic tool for metabolic studies of HSCs or other types of stem cells.

2.
Acta Diabetol ; 57(1): 41-51, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31089930

RESUMO

AIM: To identify the potential metabolite markers in diabetic retinopathy (DR) by using gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS). METHODS: GC-TOFMS spectra were acquired from vitreous and aqueous humor (AH) samples of patients with DR and non-diabetic participants. Comparative analysis was used to elucidate the distinct metabolites of DR. Metabolic pathway was employed to explicate the metabolic reprogramming pathways involved in DR. Logistic regression and receiver-operating characteristic analyses were carried out to select and validate the biomarker metabolites and establish a therapeutic model. RESULTS: Comparative analysis showed a clear separation between disease and control groups. Eight differentiating metabolites from AH and 15 differentiating metabolites from vitreous were highlighted. Out of these 23 metabolites, 11 novel metabolites have not been detected previously. Pathway analysis identified nine pathways (three in AH and six in vitreous) as the major disturbed pathways associated with DR. The abnormal of gluconeogenesis, ascorbate-aldarate metabolism, valine-leucine-isoleucine biosynthesis, and arginine-proline metabolism might weigh the most in the development of DR. The AUC of the logistic regression model established by D-2,3-Dihydroxypropanoic acid, isocitric acid, fructose 6-phosphate, and L-Lactic acid in AH was 0.965. The AUC established by pyroglutamic acid and pyruvic acid in vitreous was 0.951. CONCLUSIONS: These findings have expanded our understanding of identified metabolites and revealed for the first time some novel metabolites in DR. These results may provide useful information to explore the mechanism and may eventually allow the development of metabolic biomarkers for prognosis and novel therapeutic strategies for the management of DR.

3.
J Proteome Res ; 19(2): 699-707, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31755721

RESUMO

The macular neovascular disease is a group disorder with complex pathogenesis of neovascularization for vision impairment and irreversible blindness, posing great challenges to precise diagnosis and management. We prospectively recruited participants with age-related macular degeneration (AMD), polypoidal choroidal vasculopathy (PCV), and pathological myopia (PM) and compared with cataract patients without fundus diseases as a control group. The serum metabolome was profiled by gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) analysis. Multivariate statistical methods as well as data mining were performed for interpretation of macular neovascularization. A total of 446 participants with macular neovascularization and 138 cataract subjects as the control group were enrolled in this study. By employing GC-TOFMS, 131 metabolites were identified and 33 differentiating metabolites were highlighted in patients with macular neovascularization. For differential diagnosis, three panels of specific metabolomics-based biomarkers provided areas under the curve of 0.967, 0.938, and 0.877 in the discovery phase (n = 328) and predictive values of 87.3%, 79%, and 85.7% in the test phase (n = 256). Personalized pathway dysregulation scores measurement using Lilikoi package in R language revealed the pentose phosphate pathway and mitochondrial electron transport chain as the most important pathways in AMD; purine metabolism and glycolysis were identified as the major disturbed pathways in PCV, while the altered thiamine metabolism and purine metabolism may contribute to PM phenotypes. Serum metabolomics are powerful for characterizing metabolic disturbances of the macular neovascular disease. Differences in metabolic pathways may reflect an underlying macular neovascular disease and serve as therapeutic targets for macular neovascular treatment.

4.
Cell Rep ; 28(2): 512-525.e6, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291585

RESUMO

Drug resistance is a significant hindrance to effective cancer treatment. Although resistance mechanisms of epidermal growth factor receptor (EGFR) mutant cancer cells to lethal EGFR tyrosine kinase inhibitors (TKI) treatment have been investigated intensively, how cancer cells orchestrate adaptive response under sublethal drug challenge remains largely unknown. Here, we find that 2-h sublethal TKI treatment elicits a transient drug-tolerant state in EGFR mutant lung cancer cells. Continuous sublethal treatment reinforces this tolerance and eventually establishes long-term TKI resistance. This adaptive process involves H3K9 demethylation-mediated upregulation of branched-chain amino acid aminotransferase 1 (BCAT1) and subsequent metabolic reprogramming, which promotes TKI resistance through attenuating reactive oxygen species (ROS) accumulation. Combination treatment with TKI- and ROS-inducing reagents overcomes this drug resistance in preclinical mouse models. Clinical information analyses support the correlation of BCAT1 expression with the EGFR TKI response. Our findings reveal the importance of BCAT1-engaged metabolism reprogramming in TKI resistance in lung cancer.

5.
Nat Commun ; 10(1): 2701, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221965

RESUMO

One of the biggest hurdles for the development of metabolism-targeted therapies is to identify the responsive tumor subsets. However, the metabolic vulnerabilities for most human cancers remain unclear. Establishing the link between metabolic signatures and the oncogenic alterations of receptor tyrosine kinases (RTK), the most well-defined cancer genotypes, may precisely direct metabolic intervention to a broad patient population. By integrating metabolomics and transcriptomics, we herein show that oncogenic RTK activation causes distinct metabolic preference. Specifically, EGFR activation branches glycolysis to the serine synthesis for nucleotide biosynthesis and redox homeostasis, whereas FGFR activation recycles lactate to fuel oxidative phosphorylation for energy generation. Genetic alterations of EGFR and FGFR stratify the responsive tumors to pharmacological inhibitors that target serine synthesis and lactate fluxes, respectively. Together, this study provides the molecular link between cancer genotypes and metabolic dependency, providing basis for patient stratification in metabolism-targeted therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Mutação com Ganho de Função , Perfilação da Expressão Gênica/métodos , Glicólise/efeitos dos fármacos , Glicólise/genética , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Seleção de Pacientes , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Serina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Res ; 79(14): 3689-3701, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31101762

RESUMO

De novo nucleotide biosynthesis is essential for maintaining cellular nucleotide pools, the suppression of which leads to genome instability. The metabolic enzyme transketolase (TKT) in the nonoxidative branch of the pentose phosphate pathway (PPP) regulates ribose 5-phosphate (R5P) levels and de novo nucleotide biosynthesis. TKT is required for maintaining cell proliferation in human liver cancer cell lines, yet the role of TKT in liver injury and cancer initiation remains to be elucidated. In this study, we generated a liver-specific TKT knockout mouse strain by crossing TKTflox/flox mice with albumin-Cre mice. Loss of TKT in hepatocytes protected the liver from diethylnitrosamine (DEN)-induced DNA damage without altering DEN metabolism. DEN treatment of TKT-null liver increased levels of R5P and promoted de novo nucleotide synthesis. More importantly, supplementation of dNTPs in primary hepatocytes alleviated DEN-induced DNA damage, cell death, inflammatory response, and cell proliferation. Furthermore, DEN and high-fat diet (HFD)-induced liver carcinogenesis was reduced in TKTflox/floxAlb-Cre mice compared with control littermates. Mechanistically, loss of TKT in the liver increased apoptosis, reduced cell proliferation, decreased TNFα, IL6, and STAT3 levels, and alleviated DEN/HFD-induced hepatic steatosis and fibrosis. Together, our data identify a key role for TKT in promoting genome instability during liver injury and tumor initiation. SIGNIFICANCE: These findings identify transketolase as a novel metabolic target to maintain genome stability and reduce liver carcinogenesis.


Assuntos
Dano ao DNA , Neoplasias Hepáticas Experimentais/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Nucleotídeos/metabolismo , Ribosemonofosfatos/metabolismo , Transcetolase/deficiência , Animais , Dietilnitrosamina , Glicólise , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Via de Pentose Fosfato
7.
Cancer Res ; 78(16): 4471-4481, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29967258

RESUMO

Glucose metabolic reprogramming from oxidative phosphorylation to glycolysis is one of the hallmarks of cancer development. Coenzyme Q10 (CoQ10) is essential for electron transport in the mitochondrial respiratory chain and for antioxidant defense. Here, we investigated the role of a key factor in CoQ10 synthesis, prenyldiphosphate synthase subunit 2 (PDSS2), in hepatocellular carcinoma (HCC) tumorigenesis. PDSS2 was frequently downregulated in HCC tissues and was significantly associated with poorer HCC prognosis (P = 0.027). PDSS2 downregulation was a prognostic factor independent of T status and stage (P = 0.028). Downregulation of CoQ10 was significantly correlated with downregulation of PDSS2 in HCC tumor tissues (R = 0.414; P < 0.001). Of the six different splicing isoforms of PDSS2, the five variants other than full-length PDSS2 showed loss of function in HCC. Reintroduction of full-length PDSS2 into HCC cells increased CoQ10 and mitochondrial electron transport complex I activity and subsequently induced a metabolic shift from aerobic glycolysis to mitochondrial respiration in cells. Reintroduction of PDSS2 also inhibited foci formation, colony formation in soft agar, and tumor formation in nude mice. Knockdown of PDSS2 induced chromosomal instability in the MIHA immortalized human liver cell line. Furthermore, knockdown of PDSS2 in MIHA induced malignant transformation. Overall, our findings indicate that PDSS2 deficiency might be a novel driving factor in HCC development.Significance: Downregulation of PDSS2 is a driving factor in hepatocellular carcinoma tumorigenesis. Cancer Res; 78(16); 4471-81. ©2018 AACR.


Assuntos
Alquil e Aril Transferases/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Óxido Nítrico Sintase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Sep Sci ; 41(12): 2576-2584, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29603663

RESUMO

Lactic acid and 2-hydroxyglutaric acid are chiral metabolites that have two distinct d- and l-enantiomers with distinct biochemical properties. Perturbations of a single enantiomeric form have been found to be closely related to certain diseases. Therefore, the ability to differentiate the d and l enantiomers is important for these disease studies. Herein, we describe a method for the separation and determination of lactic acid and 2-hydroxyglutaric acid enantiomers by chiral derivatization (with l-menthol and acetyl chloride) combined with gas chromatography and mass spectrometry. The two pairs of above-mentioned enantiomers exhibited linear calibration curves with a correlation coefficient (R2 ) exceeding 0.99. The measured data were accurate in the acceptable recovery range of 88.17-102.30% with inter- and intraday precisions (relative standard deviations) in the range of 4.23-17.26%. The limits of detection for d-lactic acid, l-lactic acid, d-2-hydroxyglutaric acid, and l-2-hydroxyglutaric acid were 0.13, 0.11, 1.12, and 1.16 µM, respectively. This method was successfully applied to analyze mouse plasma. The d-lactic acid levels in type 2 diabetes mellitus mouse plasma were observed to be significantly higher (P < 0.05, t-test) than those of normal mice, suggesting that d-lactic acid may serve as an indicator for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glutaratos/química , Ácido Láctico/química , Animais , Glutaratos/sangue , Humanos , Ácido Láctico/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Exp Clin Cancer Res ; 37(1): 54, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29530061

RESUMO

BACKGROUND: Diabetic patients have a higher risk factor for colorectal cancer (CRC) metastasis. Stearoyl-CoA desaturase 1 (SCD1), the main enzyme responsible for producing monounsaturated fatty acids(MUFA) from saturated fatty acids, is frequently deregulated in both diabetes and CRC. The function and mechanism of SCD1 in metastasis of CRC and its relevance to glucose remains largely unknown. METHODS: SCD1 expression levels were analyzed in human CRC tissues and the Cancer Browser database ( https://genome-cancer.ucsc.edu/ ). CRC cell lines stably transfected with SCD1 shRNAs or vector were established to investigate the role of SCD1 in modulating migration and invasion of CRC cells. A glucose concentration gradient was set to investigate regulation of SCD1 in CRC relevant to diabetic conditions. RESULTS: The clinical data analysis showed high expression of SCD1 in CRC tissues with a negative correlation with the prognosis of CRC. In vitro experiments revealed that SCD1 increased CRC progression through promoting epithelial-mesenchymal transition (EMT). Lipidomic analysis demonstrated that SCD1 increased MUFA levels and MUFA administration could rescue migration and invasion defect of CRC cells induced by SCD1 knockdown. Furthermore, SCD1-mediated progression of CRC was promoted by carbohydrate response-element binding protein (ChREBP) in response to high glucose. Mechanistically, hyperglycemia-SCD1-MUFA induced CRC cell migration and invasion by regulating PTEN. CONCLUSIONS: Our findings show that SCD1 promotes metastasis of CRC cells through MUFA production and suppressing PTEN in response to glucose, which may be a novel mechanism for diabetes-induced CRC metastasis.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , PTEN Fosfo-Hidrolase/genética , Estearoil-CoA Dessaturase/genética , Adulto , Idoso , Animais , Biomarcadores Tumorais , Linhagem Celular , Movimento Celular , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Exp Ther Med ; 14(2): 1184-1192, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28810577

RESUMO

The incidence of inflammatory bowel disease (IBD), characterized by chronic, relapsing intestinal inflammation, has continually increased in recent years. A previous study by our group identified five potential metabolic markers possibly associated with the pathology of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced IBD in rats. The present study aimed to examine the potential therapeutic effects of the essential oil of Pogostemon cablin (also known as patchouli; PO) on TNBS-induced rats and investigate the concomitant metabolic changes by targeting the previously identified potential markers. Pogostemon cablin is widely used to treat gastrointestinal diseases, including IBD, in China. The results of the present study showed that PO (270 mg/kg, rectal instillation) significantly alleviated colonic damage and reduced disease activity indicators and colonic myeloperoxidase in TNBS-induced rats. In addition, a targeted metabolic profiling study identified that four metabolites were elevated in the urine of the animals in the TNBS group, which were significantly inhibited by treatment with PO: Two tryptophan metabolites [4-(2-aminophenyl)-2,4-dioxobutanoic acid and 4,6-cihydroxyquinoline] and two gut microbial metabolites (phenylacetylglycine and p-cresol glucuronide). Taken together, these findings suggested that PO ameliorated the symptoms of TNBS-induced IBD and reversed the metabolic changes potentially associated with TNBS-induced IBD in rats.

11.
Theranostics ; 7(12): 3021-3033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839461

RESUMO

Increased glutamine metabolism is a hallmark of cancer. Mitochondrial glutamic pyruvate transaminase (GPT2) catalyzes the reversible transamination between alanine and α-ketoglutarate (α-KG), also known as 2-oxoglutarate, to generate pyruvate and glutamate during cellular glutamine catabolism. However, the precise role of GPT2 in tumorigenesis remains elusive. Here, we report that in breast cancer tissue samples and breast cancer cell lines, GPT2 expression level was markedly elevated and correlated with the pathological grades of breast cancers. GPT2 overexpression increased the subpopulation of breast cancer stem cells in vitro and promoted tumorigenesis in mice. GPT2 reduced α-KG level in cells leading to the inhibition of proline hydroxylase 2 (PHD2) activity involved in the regulation of HIF1α stability. Accumulation of HIF1α, resulting from GPT2-α-KG-PHD2 axial, constitutively activates sonic hedgehog (Shh) signaling pathway. Overall, GPT2 promotes tumorigenesis and stemness of breast cancer cells by activating the Shh signaling, suggesting that GTP2 is a potential target for breast cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Proteínas Hedgehog/análise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Transdução de Sinais , Transaminases/análise , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Gradação de Tumores
13.
Cell Death Dis ; 8(5): e2789, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492544

RESUMO

Autophagy has a key role in metabolism and impacts on tumorigenesis. Our previous study found that halofuginone (HF) exerts anticancer activity in colorectal cancer (CRC) by downregulating Akt/mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. But whether and how HF regulates autophagy and metabolism to inhibit cancer growth remains an open question. Here, we unveil that HF activates ULK1 by downregulation of its phosphorylation site at Ser757 through Akt/mTORC1 signaling pathway, resulting in induction of autophagic flux under nutrient-rich condition. On the other hand, HF inactivates ULK1 by downregulation of its phosphorylation sites at Ser317 and Ser777 through LKB1/AMPK signaling pathway, resulting in autophagic inhibition under nutrient-poor condition. Furthermore, Atg7-dependent autophagosome formation is also induced under nutrient-rich condition or blocked in nutrient-poor environment, respectively, upon HF treatment. More interestingly, we also found that HF inhibits glycolysis under nutrient-rich condition, whereas inhibits gluconeogenesis under nutrient-poor condition in an Atg7-dependent manner, suggesting that autophagy has a pivotal role of glucose metabolism upon HF treatment. Subsequent studies showed that HF treatment retarded tumor growth in xenograft mice fed with either standard chow diet or caloric restriction through dual regulation of autophagy in vivo. Together, HF has a dual role in autophagic modulation depending on nutritional conditions for anti-CRC.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Autofagia/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Cell Biol ; 216(2): 409-424, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28122957

RESUMO

Glycolytic enzymes are known to play pivotal roles in cancer cell survival, yet their molecular mechanisms remain poorly understood. Phosphoglycerate mutase 1 (PGAM1) is an important glycolytic enzyme that coordinates glycolysis, pentose phosphate pathway, and serine biosynthesis in cancer cells. Herein, we report that PGAM1 is required for homologous recombination (HR) repair of DNA double-strand breaks (DSBs) caused by DNA-damaging agents. Mechanistically, PGAM1 facilitates DSB end resection by regulating the stability of CTBP-interacting protein (CtIP). Knockdown of PGAM1 in cancer cells accelerates CtIP degradation through deprivation of the intracellular deoxyribonucleotide triphosphate pool and associated activation of the p53/p73 pathway. Enzymatic inhibition of PGAM1 decreases CtIP protein levels, impairs HR repair, and hence sensitizes BRCA1/2-proficient breast cancer to poly(ADP-ribose) polymerase (PARP) inhibitors. Together, this study identifies a metabolically dependent function of PGAM1 in promoting HR repair and reveals a potential therapeutic opportunity for PGAM1 inhibitors in combination with PARP inhibitors.


Assuntos
Quebras de DNA de Cadeia Dupla , Desoxirribonucleotídeos/metabolismo , Neoplasias/enzimologia , Fosfoglicerato Mutase/metabolismo , Reparo de DNA por Recombinação , Células A549 , Animais , Apoptose , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Fosfoglicerato Mutase/antagonistas & inibidores , Fosfoglicerato Mutase/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Estabilidade Proteica , Proteômica/métodos , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Carcinogenesis ; 38(1): 94-104, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27879277

RESUMO

Reprogramming of intracellular metabolism is common in liver cancer cells. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. In our previous study, we reported that a novel oncogene eukaryotic translation initiation factor 5A2 (EIF5A2) promotes tumorigenesis under hypoxic condition. Here, we aim to investigate the role of EIF5A2 in cell metabolic reprogramming during hepatocellular carcinoma (HCC) development. In this study, we reported that the messenger RNA (mRNA) level of EIF5A2 was upregulated in 59 of 105 (56.2%) HCC clinical samples (P = 0.015), and EIF5A2 overexpression was significantly associated with shorter survival time of patients with HCC (P = 0.021). Ectopic expression of EIF5A2 in HCC cell lines significantly promoted cell growth and accelerated glucose utilization and lipogenesis rates. The high rates of glucose uptake and lactate secretion conferred by EIF5A2 revealed an abnormal activity of aerobic glycolysis in HCC cells. Several key enzymes involved in glycolysis including glucose transporter type 1 and 2, hexokinase 2, phosphofructokinase liver type, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase M2 isoform, phosphoglycerate mutase 1 and lactate dehydrogenase A were upregulated by overexpression of EIF5A2. Moreover, EIF5A2 showed positive correlations with FASN and ACSS2, two key enzymes involved in the fatty acid de novo biosynthetic pathway, at both protein and mRNA levels in HCC. These results indicated that EIF5A2 may regulate fatty acid de novo biosynthesis by increasing the uptake of acetate. In conclusion, our findings demonstrate that EIF5A2 has a critical role in HCC cell metabolic reprogramming and may serve as a prominent novel therapeutic target for liver cancer treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Fatores de Iniciação de Peptídeos/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida
16.
Nat Commun ; 7: 11960, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357947

RESUMO

Besides the conventional carbon sources, acetyl-CoA has recently been shown to be generated from acetate in various types of cancers, where it promotes lipid synthesis and tumour growth. The underlying mechanism, however, remains largely unknown. We find that acetate induces a hyperacetylated state of histone H3 in hypoxic cells. Acetate predominately activates lipogenic genes ACACA and FASN expression by increasing H3K9, H3K27 and H3K56 acetylation levels at their promoter regions, thus enhancing de novo lipid synthesis, which combines with its function as the metabolic precursor for fatty acid synthesis. Acetyl-CoA synthetases (ACSS1, ACSS2) are involved in this acetate-mediated epigenetic regulation. More importantly, human hepatocellular carcinoma with high ACSS1/2 expression exhibit increased histone H3 acetylation and FASN expression. Taken together, this study demonstrates that acetate, in addition to its ability to induce fatty acid synthesis as an immediate metabolic precursor, also functions as an epigenetic metabolite to promote cancer cell survival under hypoxic stress.


Assuntos
Acetatos/metabolismo , Carcinoma Hepatocelular/metabolismo , Hipóxia/metabolismo , Lipogênese , Neoplasias Hepáticas/metabolismo , Acetato-CoA Ligase/metabolismo , Acetilação , Sobrevivência Celular , Epigênese Genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos
17.
Mol Biosyst ; 12(7): 2296-303, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27197570

RESUMO

Hypoxia and inflammation have been identified as the hallmarks of colitis, intertwined with metabolism. Here, we report that halofuginone (HF), an antiparasitic drug, attenuates dextran sulfate sodium (DSS)-induced colitis in mice, as represented by attenuating the disease activity index, inhibiting colonic shortening, ameliorating colonic lesions and histological signs of damage, reducing colonic myeloperoxidase activity, and suppressing the production of pro-inflammatory cytokines in colon tissue. Intriguingly, the hypoxia-inducible factor 1alpha (HIF-1α) and tumor necrosis factor alpha were also suppressed by HF treatment in colon tissues, exhibiting a tissue-specific effect. To further reveal the metabolic signatures upon HF treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in liver, spleen and colon tissues was performed. As a result, we found that HF treatment counteracted the levels of acylcarnitines, including palmitoyl-l-carnitine, isobutyrylcarnitine, vaccenylcarnitine, and myristoylcarnitine, in colon tissues with DSS induction, but no significant change in the levels of acylcarnitines was observed in liver or spleen tissues. The metabolic signatures may indicate that incomplete fatty acid oxidation (FAO) in the colon could be restored upon HF treatment as the tissue-specific metabolic characterization. Taken together, our findings uncovered that the HF potentiated anti-inflammatory effect in DSS-induced colitis in mice and its underlying mechanisms could be associated with the inhibition of HIF-1α and reduced levels of acylcarnitines, suggesting that both the inhibition of HIF-1α and the counteraction of incomplete FAO might be useful in the prevention and treatment of inflammatory bowel disease.


Assuntos
Colite/metabolismo , Metabolismo Energético/efeitos dos fármacos , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Biomarcadores , Peso Corporal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Ácidos Graxos/metabolismo , Expressão Gênica , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Peroxidase/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo
18.
Talanta ; 152: 119-26, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26992502

RESUMO

Elucidation of altered metabolic pathways by using metabolomics may open new avenues for basic research on disease mechanisms and facilitate the development of novel therapeutic strategies. Here, we report the development of ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomics platform with capability of measuring both cationic and anionic intermediates in cellular metabolism. The platform was established based on the hydrophobic ion-pairing interaction chromatography coupled with tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The MRM transitions were created and optimized via energy-resolved collision-induced dissociation experiments, serving as an essential reference point for the quantification and identification. For chromatographic separation, application of hydrophobic ion-pairing interaction led to dramatic enhancement on retention of water-soluble metabolites and provision of good peak shapes. Two volatile ion-pairing reagents, namely heptafluorobutyric acid and tributylamine, were used with dedicated C18 columns as complementary separation systems coupled with the MRM analysis, allowing measurement of the metabolites of interest at nanomolar levels. The developed platform was successfully applied to investigate the altered metabolism in hepatic cells with over-expression of an oncogene, thus can provide important information on the rewired metabolism.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/metabolismo , Metabolômica/métodos , Oncogenes/genética , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética
19.
Sci Rep ; 6: 21184, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26878908

RESUMO

Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.


Assuntos
Antígeno AC133/metabolismo , Vias Biossintéticas , Carcinoma Hepatocelular/metabolismo , Glucose/metabolismo , Hexosaminas/biossíntese , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Azasserina/farmacologia , Biomarcadores , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Glicólise , Humanos , Metabolômica/métodos , Fenótipo
20.
Rapid Commun Mass Spectrom ; 30(4): 533-42, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26777684

RESUMO

RATIONALE: Breast cancer is the leading cause of cancer death among women worldwide. Identification of lipid targets that play a role in breast cancer invasion may advance our understanding of the rapid progression of cancer and may lead to the development of new biomarkers for the disease. METHODS: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was applied for the lipidomic profiling of two poorly invasive and two highly invasive breast cancer cell lines to identify the differentially accumulated lipids related to the invasive phenotype. The four cell lines were individually grown on indium tin oxide (ITO)-coated glass slides, analyzed as cell cultures. The raster width and matrix for detection were optimized to improve detection sensitivity. RESULTS: Optimized MSI measurements were performed directly on the cell culture with 9-aminoacridine as matrix, resulting in 215 endogenous compounds detected in positive ion mode and 267 endogenous compounds in negative ion mode in all the four cell lines, representing the largest group of analytes that have been analyzed from cells by a single MSI study. In highly invasive cell lines, 31 lipids including phosphatidylglycerol (PG) and phosphatidic acids were found upregulated and eight lipids including sphingomyelin (SM) downregulated in negative ion mode. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, like oleic-acid-containing PG, may be involved in mitochondrial dysfunction and thus affect the invasion of breast cancer cells. The deficiency of SM may be related to the disruption of apoptosis in highly invasive cancer cells. CONCLUSIONS: This work uncovered more analytes in cells by MSI than previous reports, providing a better visualization and novel insights to advance our understanding of the relationship between rapid progression of breast cancer and lipid metabolism. The most altered lipids may aid the discovery of diagnostic markers and therapeutic targets of breast cancer.


Assuntos
Neoplasias da Mama/química , Lipídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biomarcadores/química , Biomarcadores/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Feminino , Humanos , Metabolismo dos Lipídeos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA