Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Sci Technol ; 47(13): 7295-306, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23305532


From August 22 to September 16, 2012, atmospheric mercury (Hg) was measured from a common manifold in the field during the Reno Atmospheric Mercury Intercomparison eXperiment. Data were collected using Tekran systems, laser induced fluorescence, and evolving new methods. The latter included the University of Washington-Detector for Oxidized Mercury, the University of Houston Mercury instrument, and a filter-based system under development by the University of Nevada-Reno. Good transmission of total Hg was found for the manifold. However, despite application of standard protocols and rigorous quality control, systematic differences in operationally defined forms of Hg were measured by the sampling systems. Concentrations of reactive Hg (RM) measured with new methods were at times 2-to-3-fold higher than that measured by Tekran system. The low RM recovery by the latter can be attributed to lack of collection as the system is currently configured. Concentrations measured by all instruments were influenced by their sampling location in-the-manifold and the instrument analytical configuration. On the basis of collective assessment of the data, we hypothesize that reactions forming RM were occurring in the manifold. Results provide a new framework for improved understanding of the atmospheric chemistry of Hg.

Poluentes Atmosféricos/análise , Mercúrio/análise , Poluentes Atmosféricos/química , Brometos/análise , Monóxido de Carbono/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Mercúrio/química , Compostos de Mercúrio/análise , Nevada , Ozônio/análise
Ecol Appl ; 16(4): 1590-607, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937820


Atmospheric deposition has long been recognized as an important source of pollutants and nutrients to ecosystems. The need for reliable, spatially explicit estimates of total atmospheric deposition (wet + dry + cloud) is central, not only to air pollution effects researchers, but also for calculation of input-output budgets, and to decision makers faced with the challenge of assessing the efficacy of policy initiatives related to deposition. Although atmospheric deposition continues to represent a critical environmental and scientific issue, current estimates of total deposition have large uncertainties, particularly across heterogeneous landscapes such as montane regions. We developed an empirical modeling approach that predicts total deposition as a function of landscape features. We measured indices of total deposition to the landscapes of Acadia (121 km2) and Great Smoky Mountains (2074 km2) National Parks (USA). Using approximately 300-400 point measurements and corresponding landscape variables at each park, we constructed a statistical (general linear) model relating the deposition index to landscape variables measured in the field. The deposition indices ranged over an order of magnitude, and in response to vegetation type and elevation, which together explained approximately 40% of the variation in deposition. Then, using the independent landscape variables available in GIS data layers, we created a GIS-relevant statistical nitrogen (N) and sulfur (S) deposition model (LandMod). We applied this model to create park-wide maps of total deposition that were scaled to wet and dry deposition data from the closest national network monitoring stations. The resultant deposition maps showed high spatial heterogeneity and a four- to sixfold variation in "hot spots" and "cold spots" of N and S deposition ranging from 3 to 31 kg N x ha(-1) x yr(-1) and from 5 to 42 kg S x ha(-1) x yr(-1) across these park landscapes. Area-weighted deposition was found to be up to 70% greater than NADP plus CASTNET monitoring-station estimates together. Model-validation results suggest that the model slightly overestimates deposition for deciduous and coniferous forests at low elevation and underestimates deposition for high-elevation coniferous forests. The spatially explicit deposition estimates derived from LandMod are an improvement over what is currently available. Future research should test LandMod in other mountainous environments and refine it to account for (currently) unexplained variation in deposition.

Poluentes Atmosféricos/análise , Atmosfera/química , Ecossistema , Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Modelos Teóricos
Sci Total Environ ; 304(1-3): 175-84, 2003 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-12663182


Elemental Hg (Hg(0)) evolution from soils can be an important process and needs to be measured in more ecosystems. The diffusion model for soil gaseous efflux has been applied to modeling the fluxes of several gases in soils and deserves testing with regard to Hg(0). As an initial test of this model, we examined soil gaseous Hg(0) and CO(2) concentrations at two depths (20 and 40 cm) over the course of a controlled environment study conducted in the EcoCELLs at the Desert Research Institute in Reno, Nevada. We also compared small, spatially distributed gas wells against the more commonly used large gas wells. In this study, two EcoCELLs were first watered (June 2000) and then planted (July 2000) with trembling aspen (Populus tremuloides). Following that, trees were harvested (October 2000) and one EcoCELL (EcoCELL 2) was replanted with aspen (25 April 2001). During most of the experiment, there was a strong vertical gradient of CO(2) (increasing with depth, as is typical of a diffusion-driven process), but no vertical gradient of soil gaseous Hg(0). Strong diel variations in soil gas Hg(0) concentration were noted, whereas diel variations in CO(2) were small and not statistically significant. Initial watering and planting caused increases in both soil gas CO(2) and Hg(0). Replanting in EcoCELL 2 caused a statistically significant increase in soil gas CO(2) but not Hg(0). Calculated Hg(0) effluxes using the diffusion model produced values two orders of magnitude lower than those measured using field chambers placed directly on the soil or whole-cell fluxes. Neither soil gas Hg(0) concentrations nor calculated fluxes were correlated with measured Hg(0) efflux from soil or from whole EcoCELLs. We conclude that (1) soil gas Hg(0) flux is not diffusion-driven and thus soil gas Hg(0) concentrations cannot be used to calculated soil Hg(0) efflux; (2) soil gas Hg(0) concentrations are increased by watering dry soil, probably because of displacement/desorption processes; (3) soil gas Hg(0) concentrations were unaffected by plants, suggesting that roots and rhizosphere processes are unimportant in controlling Hg(0) evasion from the soil surface. We recommend the use of the small wells in all future studies because they are much easier to install and provide more resolution of spatial and temporal patterns in soil gaseous Hg(0).

Mercúrio/química , Modelos Teóricos , Poluentes do Solo/análise , Dióxido de Carbono , Difusão , Ecossistema , Monitoramento Ambiental , Gases , Raízes de Plantas , Populus , Volatilização