Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2164, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092820

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease, characterised by increased expression of type I interferon (IFN)-regulated genes and a striking sex imbalance towards females. Through combined genetic, in silico, in vitro, and ex vivo approaches, we define CXorf21, a gene of hitherto unknown function, which escapes X-chromosome inactivation, as a candidate underlying the Xp21.2 SLE association. We demonstrate that CXorf21 is an IFN-response gene and that the sexual dimorphism in expression is magnified by immunological challenge. Fine-mapping reveals a single haplotype as a potential causal cis-eQTL for CXorf21. We propose that expression is amplified through modification of promoter and 3'-UTR chromatin interactions. Finally, we show that the CXORF21 protein colocalises with TLR7, a pathway implicated in SLE pathogenesis. Our study reveals modulation in gene expression affected by the combination of two hallmarks of SLE: CXorf21 expression increases in a both an IFN-inducible and sex-specific manner.


Assuntos
Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lúpus Eritematoso Sistêmico/genética , Regiões 3' não Traduzidas/genética , Adulto , Fatores Etários , Estudos de Casos e Controles , Feminino , Genes Ligados ao Cromossomo X/imunologia , Predisposição Genética para Doença , Humanos , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Regiões Promotoras Genéticas/genética , Fatores Sexuais , Receptor 7 Toll-Like/genética
2.
Cell Calcium ; 79: 57-67, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831274

RESUMO

Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400-403), which is located within the CAD/SOAR domain. We determined this segment's specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA