Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Med Chem ; 12(9): 1525-1539, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34671736

RESUMO

The identification of specific biomarkers for Zika infection and its clinical complications is fundamental to mitigate the infection spread, which has been associated with a broad range of neurological sequelae. We present the characterization of antibody responses in serum samples from individuals infected with Zika, presenting non-severe (classical) and severe (neurological disease) phenotypes, with high-density peptide arrays comprising the Zika NS1 and NS2B proteins. The data pinpoints one strongly IgG-targeted NS2B epitope in non-severe infections, which is absent in Zika patients, where infection progressed to the severe phenotype. This differential IgG profile between the studied groups was confirmed by multivariate data analysis. Molecular dynamics simulations and circular dichroism have shown that the peptide in solution presents itself in a sub-optimal conformation for antibody recognition, which led us to computationally engineer an artificial protein able to stabilize the NS2B epitope structure. The engineered protein was used to interrogate paired samples from mothers and their babies presenting Zika-associated microcephaly and confirmed the absence of NS2B IgG response in those samples. These findings suggest that the assessment of antibody responses to the herein identified NS2B epitope is a strong candidate biomarker for the diagnosis and prognosis of Zika-associated neurological disease.

2.
Virus Evol ; 7(2): veab069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532067

RESUMO

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.

3.
J Neuroimmunol ; 360: 577697, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461359

RESUMO

Zika virus (ZIKV) infection has been associated with the development of Neuromyelitis Optica Spectrum Disorder (NMOSD). ZIKV-induced antibodies that putatively cross-react to aquaporin-4 (AQP4) protein are suggested to cause inflammation of the optic nerve. A region of similarity between AQP4 and the ZIKV NS2B protein was identified. Our data showed that ZIKV-associated NMOSD patients develop anti-AQP4 antibodies, but not anti-ZIKV NS2B antibodies, revealing that cross-reacting antibodies are not the underlying cause of this phenotype. ZIKV infection in mice showed persistent viral replication in the eye tissue, suggesting that NMOSD symptoms are consequence of viral infection of the optic nerve cells.

4.
J Fungi (Basel) ; 7(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071195

RESUMO

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

5.
Chem Commun (Camb) ; 57(49): 6094-6097, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34037640

RESUMO

SARS-CoV-2 VOC immune evasion is mainly due to lower cross-reactivity from previously elicited class I/II neutralizing antibodies, while increased affinity to hACE2 plays a minor role. The affinity between antibodies and VOCs is impacted by remodeling of the electrostatic surface potential of the Spike RBDs. The P.3 variant is a putative VOC.


Assuntos
Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Evasão da Resposta Imune/genética , SARS-CoV-2/imunologia , Afinidade de Anticorpos/imunologia , Reações Cruzadas/genética , Modelos Moleculares , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Eletricidade Estática
7.
J Infect Dis ; 224(3): 517-525, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33320259

RESUMO

BACKGROUND: We took advantage of the 2015-2016 Brazilian arbovirus outbreak (Zika [ZIKV]/dengue/chikungunya viruses) associated with neurological complications to type HLA-DRB1/DQA1/DQB1 variants in patients exhibiting neurological complications and in bone marrow donors from the same endemic geographical region. METHODS: DRB1/DQA1/DQB1 loci were typed using sequence-specific oligonucleotides. In silico studies were performed using X-ray resolved dimer constructions. RESULTS: The DQA1*01, DQA1*05, DQB1*02, or DQB1*06 genotypes/haplotypes and DQA1/DQB1 haplotypes that encode the putative DQA1/DQB1 dimers were overrepresented in the whole group of patients and in patients exhibiting peripheral neurological spectrum disorders (PSD) or encephalitis spectrum disorders (ESD). The DRB1*04, DRB1*13, and DQA1*03 allele groups protected against arbovirus neurological manifestation, being underrepresented in whole group of patients and ESD and PSD groups. Genetic and in silico studies revealed that DQA1/DQB1 dimers (1) were primarily associated with susceptibility to arbovirus infections; (2) can bind to a broad range of ZIKV peptides (235 of 1878 peptides, primarily prM and NS2A); and (3) exhibited hydrophilic and highly positively charged grooves when compared to the DRA1/DRB1 cleft. The protective dimer (DRA1/DRB1*04) bound a limited number of ZIKV peptides (40 of 1878 peptides, primarily prM). CONCLUSION: Protective haplotypes may recognize arbovirus peptides more specifically than susceptible haplotypes.

8.
J Chem Inf Model ; 60(12): 5923-5927, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33213140

RESUMO

Rotational Profiler provides an analytical algorithm to compute sets of classical torsional dihedral parameters by fitting an empirical energy profile to a reference one that can be obtained experimentally or by quantum-mechanical methods. The resulting profiles are compatible with the functional forms in the most widely used biomolecular force fields (e.g., GROMOS, AMBER, OPLS, and CHARMM). The linear least-squares regression method is used to generate sets of parameters that best satisfy the fitting. Rotational Profiler is free to use, analytical, and force field/package independent. The formalism is herein described, and its usage, in an interactive and automated manner, is made available as a Web server at http://rotprof.lncc.br.


Assuntos
Algoritmos , Computadores , Análise dos Mínimos Quadrados
9.
J Chem Inf Model ; 60(2): 473-484, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31508962

RESUMO

Curvature is an intrinsic feature of biological membranes underlying vital cellular processes such as endocytosis, membrane fusion-fission, trafficking, and remodeling. The continuous expansion of the spatiotemporal scales accessible to computational simulations nowadays makes possible quasi-atomistic molecular dynamics simulations of these processes. In despite of that, computation of the shapes and curvatures associated with the dynamics of biological membranes remains challenging. For this reason, the effect of curvature is often neglected in the analysis of quantities essential for the accurate description of membrane properties (e.g., area and volume per lipid, density profiles, membrane thickness). We propose an algorithm for surface assessment via grid evaluation (SuAVE) that relies on the application of a radial base function to interpolate points scattered across an interface of any shape. This enables the representation of the chemical interface as fully differentiable so that related geometrical properties can be calculated through the straightforward employment of well-established differential geometry techniques. Hence, the effect of different types or degrees of curvature can be accurately taken into account in the calculations of structural properties of any interfaces regardless of chemical composition, asymmetry, and level of atom coarseness. The main functionalities implemented in SuAVE are featured for a number of tetraacylated and hexaacylated Lipid-A membranes of distinct curvatures and a surfactant micelle. We show that the properties calculated for moderately to highly curved membranes differ significantly between curvature-dependent and -independent algorithms. The SuAVE software is freely available from www.biomatsite.net/suave-software .


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Acilação , Algoritmos , Lipídeo A/química , Lipídeo A/metabolismo , Conformação Molecular
10.
Mol Phylogenet Evol ; 140: 106607, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31473337

RESUMO

Dengue (DENV) and Zika (ZIKV) viruses are antigenically and evolutionarily related; immunological cross-reactions between them have been associated to both cross-protection and infection-enhanced mechanisms. Here, DENV-1-4 and ZIKV were investigated through Bayesian coalescent-based approaches and selection-driven Darwinian evolution methods using robust datasets. Our findings show that both DENV and ZIKV, driven essentially by directional positive selection, have undergone evolution and diversification and that their entire polyproteins are subject to an intense directional evolution. Interestingly, positively selected codons mapped here are directly associated to DENV-1-2 virulence as well as the ZIKV burgeoning 2015-16 outbreak in the Americas, therefore, having impact on the pathogenesis of these viruses. Biochemical prediction analysis focusing on markers involved in virulence and viral transmission dynamics identified alterations in N-Glycosylation-, Phosphorylation- and Palmitoylation-sites in ZIKV sampled from different countries, hosts and isolation sources. Taking into account both DENV-ZIKV co-circulation either into and/or out of flavivirus-endemic regions, as well as recombination and quasispecies scenarios, these results indicate the action of a selection-driven evolution affecting the biology, virulence and pathogenesis of these pathogens in a non-randomized environment.


Assuntos
Evolução Biológica , Vírus da Dengue/patogenicidade , Seleção Genética , Zika virus/patogenicidade , Teorema de Bayes , Códon/genética , Dengue/virologia , Vírus da Dengue/genética , Humanos , Funções Verossimilhança , Filogenia , Virulência , Zika virus/genética , Infecção por Zika virus/virologia
11.
J Mol Graph Model ; 93: 107442, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479948

RESUMO

Antibodies against the HIV-1 2F5 epitope are known as one of the most powerful and broadly protective anti-HIV antibodies. Therefore, vaccine strategies that include the 2F5 epitope in their formulation require a robust method to detect specific anti-2F5 antibody production by B cells. Towards this goal, we have biotinylated a previously reported computer-designed protein carrying the HIV-1 2F5 epitope aiming the further development of a platform to detect human B-cells expressing anti-2F5 antibodies through flow cytometry. Biophysical and immunological properties of our devised protein were characterized by computer simulation and experimental methods. Biotinylation did not affect folding and improved protein stability and solubility. The biotinylated protein exhibited similar binding affinity trends compared to its unbiotinylated counterpart and was recognized by anti-HIV-1 2F5 antibodies expressed on the surface of patient-derived peripheral blood mononuclear cells. Moreover, we present a high affinity marker for the identification of epitope-specific B cells that can be used to measure the efficacy of vaccine strategies based on the HIV-1 envelope protein.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/metabolismo , Biotinilação , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Leucócitos Mononucleares/metabolismo , Simulação de Dinâmica Molecular , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Simulação por Computador , Epitopos/imunologia , Humanos
12.
Carbohydr Polym ; 207: 266-275, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600009

RESUMO

The ability of erythrocytes, infected by Plasmodium falciparum, to adhere to endothelial cells (cytoadherence) and to capture uninfected erythrocyte (rosetting) is the leading cause of death by severe malaria. Evidences link the binding of the adhesin Duffy Binding Like1-α (DBL1α) domain to the ABH histo-blood antigens with formation of rosettes. Inspired by this very close relationship between the disease susceptibility and individual blood type, here we investigate the structural requirements involved in the interaction of DBL1α with A, B and H histo-blood determinants and their subtypes. Our results evidence the high preference of DBL1α to A epitopes, in comparison to B and H epitopes. DBL1α interacts with ABH epitopes in subtype specific manner, presenting a remarkable affinity for type 2 structures, Fucα1-2Galß1-4GlcNAcß1, particularly the A2 epitope. The contacts made by DBL1α binding pocket and the ABH histo-blood groups were mapped by theoretical methods and supported by NMR experiments.

13.
Front Pharmacol ; 9: 395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740321

RESUMO

The identification of lead compounds usually includes a step of chemical diversity generation. Its rationale may be supported by both qualitative (SAR) and quantitative (QSAR) approaches, offering models of the putative ligand-receptor interactions. In both scenarios, our understanding of which interactions functional groups can perform is mostly based on their chemical nature (such as electronegativity, volume, melting point, lipophilicity etc.) instead of their dynamics in aqueous, biological solutions (solvent accessibility, lifetime of hydrogen bonds, solvent structure etc.). As a consequence, it is challenging to predict from 2D structures which functional groups will be able to perform interactions with the target receptor, at which intensity and relative abundance in the biological environment, all of which will contribute to ligand potency and intrinsic activity. With this in mind, the aim of this work is to assess properties of aromatic rings, commonly used for drug design, in aqueous solution through molecular dynamics simulations in order to characterize their chemical features and infer their impact in complexation dynamics. For this, common aromatic and heteroaromatic rings were selected and received new atomic charge set based on the direction and module of the dipole moment from MP2/6-31G* calculations, while other topological terms were taken from GROMOS53A6 force field. Afterwards, liquid physicochemical properties were simulated for a calibration set composed by nearly 40 molecules and compared to their respective experimental data, in order to validate each topology. Based on the reliance of the employed strategy, we expanded the dataset to more than 100 aromatic rings. Properties in aqueous solution such as solvent accessible surface area, H-bonds availability, H-bonds residence time, and water structure around heteroatoms were calculated for each ring, creating a database of potential interactions, shedding light on features of drugs in biological solutions, on the structural basis for bioisosterism and on the enthalpic/entropic costs for ligand-receptor complexation dynamics.

14.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833661

RESUMO

Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.

15.
J Chem Inf Model ; 57(9): 2181-2193, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28805387

RESUMO

Lipid-A is the causative agent of Gram-negative sepsis and is responsible for an increasingly high mortality rate among hospitalized patients. Compounds that bind Lipid-A can limit this inflammatory process. The cationic antimicrobial peptide polymyxin B (Pmx-B) is one of the simplest molecules capable of selectively binding to Lipid-A and may serve as a model for further development of Lipid-A binding agents. Gram-negative bacteria resistance to Pmx-B relies on the upregulation of a number of regulatory systems, which promote chemical modifications of the lipopolysaccharide (LPS) structure and leads to major changes in the physical-chemical properties of the outer membrane. A detailed understanding of how the chemical structure of the LPS modulates macroscopic properties of the outer membrane is paramount for the design and optimization of novel drugs targeting clinically relevant strains. We have performed a systematic investigation of Pmx-B binding to outer membrane models composed of distinct LPS chemotypes experimentally shown to be either resistant or susceptible to the peptide. Molecular dynamics simulations were carried out for Pmx-B bound to the penta- and hexa-acylated forms of Lipid-A (more susceptible) and Lipid-A modified with 4-amino-4-deoxy-l-arabinose (resistant) as well as the penta-acylated form of LPS Re (less susceptible). The present simulations show that upon binding to the bacterial outer membrane surface, Pmx-B promotes cation displacement and structural changes in membrane curvature and integrity as a function of the LPS chemotype susceptibility or resistance to the antimicrobial peptide.


Assuntos
Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Polimixina B/metabolismo , Polimixina B/farmacologia , Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Polimixina B/química , Conformação Proteica
16.
J Biol Chem ; 292(21): 8797-8810, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28400484

RESUMO

The Staphylococcus aureus cell surface contains cell wall-anchored proteins such as fibronectin-binding protein A (FnBPA) that bind to host ligands (e.g. fibronectin; Fn) present in the extracellular matrix of tissue or coatings on cardiac implants. Recent clinical studies have found a correlation between cardiovascular infections caused by S. aureus and nonsynonymous SNPs in FnBPA. Atomic force microscopy (AFM), surface plasmon resonance (SPR), and molecular simulations were used to investigate interactions between Fn and each of eight 20-mer peptide variants containing amino acids Ala, Asn, Gln, His, Ile, and Lys at positions equivalent to 782 and/or 786 in Fn-binding repeat-9 of FnBPA. Experimentally measured bond lifetimes (1/koff) and dissociation constants (Kd = koff/kon), determined by mechanically dissociating the Fn·peptide complex at loading rates relevant to the cardiovascular system, varied from the lowest-affinity H782A/K786A peptide (0.011 s, 747 µm) to the highest-affinity H782Q/K786N peptide (0.192 s, 15.7 µm). These atomic force microscopy results tracked remarkably well to metadynamics simulations in which peptide detachment was defined solely by the free-energy landscape. Simulations and SPR experiments suggested that an Fn conformational change may enhance the stability of the binding complex for peptides with K786I or H782Q/K786I (Kdapp = 0.2-0.5 µm, as determined by SPR) compared with the lowest-affinity double-alanine peptide (Kdapp = 3.8 µm). Together, these findings demonstrate that amino acid substitutions in Fn-binding repeat-9 can significantly affect bond strength and influence the conformation of Fn upon binding. They provide a mechanistic explanation for the observation of nonsynonymous SNPs in fnbA among clinical isolates of S. aureus that cause endovascular infections.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Polimorfismo de Nucleotídeo Único , Staphylococcus aureus/química , Staphylococcus aureus/genética , Adesinas Bacterianas/metabolismo , Substituição de Aminoácidos , Microscopia de Força Atômica , Mutação de Sentido Incorreto , Sequências Repetitivas de Aminoácidos , Staphylococcus aureus/metabolismo , Ressonância de Plasmônio de Superfície
17.
ACS Omega ; 2(7): 3913-3920, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023708

RESUMO

B-cell epitope sequences from Zika virus (ZIKV) NS1 protein have been identified using epitope prediction tools. Mapping these sequences onto the NS1 surface reveals two major conformational epitopes and a single linear one. Despite an overall average sequence identity of ca. 55% between the NS1 from ZIKV and the four dengue virus (DENV) serotypes, epitope sequences were found to be highly conserved. Nevertheless, nonconserved epitope-flanking residues are responsible for a dramatically divergent electrostatic surface potential on the epitope regions of ZIKV and DENV2 serotypes. These findings suggest that strategies for differential diagnostics on the basis of short linear NS1 sequences are likely to fail due to immunological cross-reactions. Overall, results provide the molecular basis of differential discrimination between Zika and DENVs by NS1 monoclonal antibodies.

18.
Proteins ; 85(4): 561-570, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28019699

RESUMO

The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetilglucosamina/química , Asparagina/química , Fator de Crescimento Epidérmico/química , Receptores ErbB/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Glicosilação , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica
19.
Nano Lett ; 16(10): 6709-6715, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27673480

RESUMO

Despite the need for molecularly smooth self-assembled monolayers (SAMs) on silicon dioxide surfaces (the most common dielectric surface), current techniques are limited to nonideal silane grafting. Here, we show unique bioinspired zwitterionic molecules forming a molecularly smooth and uniformly thin SAM in "water" in <1 min on various dielectric surfaces, which enables a dip-coating process that is essential for organic electronics to become reality. This monomolecular layer leads to high mobility of organic field-effect transistors (OFETs) based on various organic semiconductors and source/drain electrodes. A combination of experimental and computational techniques confirms strong adsorption (Wad > 20 mJ m-2), uniform thickness (∼0.5 or ∼1 nm) and orientation (all catechol head groups facing the oxide surface) of the "monomolecular" layers. This robust (strong adsorption), rapid, and green SAM represents a promising advancement toward the next generation of nanofabrication compared to the current nonuniform and inconsistent polysiloxane-based SAM involving toxic chemicals, long processing time (>10 h), or heat (>80 °C).

20.
Infect Immun ; 83(12): 4772-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416903

RESUMO

Endovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and foster initiation of disease, and (ii) CC45-like FnBPs promote cell invasion, a key attribute in persistent endovascular infections.


Assuntos
Adesinas Bacterianas/genética , Bacteriemia/microbiologia , Fibronectinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Isoformas de Proteínas/genética , Infecções Estafilocócicas/microbiologia , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Bacteriemia/patologia , Sítios de Ligação , Vasos Sanguíneos/microbiologia , Vasos Sanguíneos/patologia , Células Clonais , Fibronectinas/química , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Dados de Sequência Molecular , Polimorfismo Genético , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Infecções Estafilocócicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...