Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 388: 122070, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31954307

RESUMO

The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly appreciated to be as important as microbial contaminants. This paper focused on UV-activated persulfate (UV/PS), an advanced oxidation process, in removing ARB and ARGs from secondary wastewater effluent. Results showed that the inactivation efficiency of macrolides-resistant bacteria (MRB), sulfonamides-resistant bacteria (SRB), tetracyclines-resistant bacteria (TRB) and quinolones-resistant bacteria (QRB) by UV/PS reached 96.6 %, 94.7 %, 98.0 % and 99.9 % in 10 min, respectively. UV/PS also showed significant removal efficiency on ARGs. The reduction of total ARGs reached 3.84 orders of magnitude in UV/PS which is more than that in UV by 0.56 log. Particularly, the removal of mobile genetic elements (MGE) which might favor the horizontal gene transfer of ARGs among different microbial achieved 76.09 % by UV/PS. High-throughput sequencing revealed that UV/PS changed the microbial community. The proportions of Proteobacteria and Actinobacteria that pose human health risks were 4.25 % and 1.6 % less than UV, respectively. Co-occurrence analyzes indicated that ARGs were differentially contributed by bacterial taxa. In UV/PS system, hydroxyl radical and sulfate radical contributed to the removal of bacteria and ARGs. Our study provided a new method of UV/PS to remove ARGs and ARB for wastewater treatment.

2.
Bioresour Technol ; 297: 122409, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31740246

RESUMO

In this study, the growth and lipid accumulation of Scenedesmus sp. using different nanoparticles and light sources were investigated. Xenon lamp can produce a broad illumination spectrum, and exhibited better performance than light-emitting diode. SiC and g-C3N4 nanoparticles improved the biomass and lipid accumulation, whereas TiO2 and TiC nanoparticles had inhibitory influence on microalgae. Lipid production can be improved by oxidative stress produced by combination of nanoparticles and xenon lamp irradiation. At the optimal SiC nanoparticles concentration of 150 mg L-1 and photoperiod of 6:18 h, the maximum biomass concentration and total lipid content reached 3.18 g L-1 and 40.26%, respectively. The addition of SiC nanoparticles could promote the substrate utilization rate and induce stress condition, thereby enhancing the activity of acetyl-CoA carboxylase and lipid biosynthesis. This research shows that SiC nanoparticles addition combined with xenon lamp illumination is a promising strategy to promote microalgal growth and lipid accumulation.


Assuntos
Microalgas , Nanopartículas , Scenedesmus , Biomassa , Iluminação , Lipídeos , Xenônio
3.
Environ Sci Technol ; 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31790207

RESUMO

This work developed a novel Membrane Granular Sludge Reactor (MGSR) equipped with a gas permeable membrane module for efficient methane delivery to cultivate nitrate/nitrite dependent anaerobic methane oxidation (n-DAMO) microorganisms in granular sludge. As proof of concept, the MGSR was fed with synthetic wastewater containing nitrate and ammonium to facilitate the growth of n-DAMO microorganisms. The granular sludge of n-DAMO and Anammox was gradually developed and achieved a nitrogen removal rate of 1.08 g NO3--N L-1 d-1 and 0.81 g NH4+-N L-1 d-1. Finally, enriched granular sludge was successfully applied for nitrogen removal from the synthetic partial nitritation effluent. The combined dominance of n-DAMO archaea, Anammox bacteria, and n-DAMO bacteria in the microbial community was confirmed by 16S rRNA amplicon sequencing. Fluorescence in situ hybridization revealed that a layered structure was formed in the granular sludge with Anammox bacteria in the outer layer and n-DAMO microorganisms in the inner layer when granules were fed with nitrite and ammonium. The high performance of nitrogen removal (16.53 kg N m-3 d-1) with satisfactory effluent quality (∼8 mg N L-1) and excellent biomass retention capacity (43 g VSS L-1) make the MGSR promising for the practical application of n-DAMO and Anammox in wastewater treatment.

4.
Environ Int ; 132: 105107, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31476641

RESUMO

Integrating denitrifying anaerobic methane oxidation (DAMO) with Anammox provides alternative solutions to simultaneously remove nitrogen and mitigate methane emission from wastewater treatment. However, the practical application of DAMO has been greatly limited by slow-growing DAMO microorganisms living on low-solubility gaseous methane. In this work, DAMO and Anammox co-cultures were fast enriched using high concentration of mixed sludges from various environments, and achieved nitrogen removal rate of 76.7 mg NH4+-N L-1 d-1 and 87.9 mg NO3--N L-1 d-1 on Day 178. Subsequently, nitrogen removal rate significantly decreased but recovered quickly through increasing methane flushing frequency, indicating methane availability could be the limiting factor of DAMO activity. Thus, this work developed a novel Membrane Aerated Membrane Bioreactor (MAMBR), which equipped with gas permeable membrane for efficient methane delivery and ultrafiltration membrane for complete biomass retention. After inoculated with enriched sludge, nitrogen removal rates of MAMBR were significantly enhanced to 126.9 mg NH4+-N L-1 d-1 and 158.8 mg NO3--N L-1 d-1 by membrane aeration in batch test. Finally, the MAMBR was continuously fed with synthetic wastewater containing ammonium and nitrite to mimic the effluent from partial nitritation. When steady state with nitrogen loading rate of 2500 mg N L-1 d-1 was reached, the MAMBR achieved total nitrogen removal of 2496.7 mg N L-1 d-1, with negligible nitrate in effluent (~6.5 mg NO3--N L-1). 16S rRNA amplicon sequencing and fluorescence in situ hybridization revealed the microbial community dynamics during enrichment and application. The high performance of nitrogen removal (2.5 kg N m-3 d-1) within 200 days operation and excellent biomass retention capacity (8.67 kg VSS m-3) makes the MAMBR promising for practical application of DAMO and Anammox in wastewater treatment.

5.
Bioresour Technol ; 289: 121774, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31301947

RESUMO

This study evaluates a two-stage process by dark fermentation and microalgal cultivation for hydrogen and lipid production from different agricultural biomass residues, such as corn cob, corn stalk, rice straw and wheat straw. Results indicate that corn stalk was the best fermentation feedstock for hydrogen production and the highest accumulative hydrogen volume of 762.3 mL L-1 was obtained in batch mode. Dark fermentative effluent from corn stalk was rich in acetate and butyrate, and was favorable to lipid production. The maximum algal biomass and total lipid content reached 1461.1 mg L-1 and 35.2%, respectively. Meanwhile, the energy conversion efficiency in two-stage cultivation significantly increased from 5.78% to 16.96%. The system was stable and effective in long-term operation, and the average hydrogen production rate of 811.1 mL L-1 d-1 and lipid concentration of 588.5 mg L-1 were achieved. This study provides a promising process for enhancing energy production from agricultural wastes.


Assuntos
Biomassa , Fermentação , Hidrogênio , Lipídeos , Microalgas , Oryza , Triticum , Zea mays
6.
Bioresour Technol ; 287: 121468, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31113708

RESUMO

In this study, a novel integrated dark fermentative and microalgal bioreactor (IDFMB) was developed to simultaneously produce H2 and lipid from food waste. Under the optimized working volume ratio of 1:4, starch concentration of 7 g L-1 and initial pH of 7.0, the highest H2 production of 1643.5 mL L-1 and lipid yield of 515.6 mg L-1 were achieved. Microalgae can effectively utilize the main end products in dark fermentative effluent (acetic acid and butyric acid) for cell growth and lipid accumulation. Compared with single dark fermentation, the energy conversion efficiency from stimulated food waste was significantly enhanced by the IDFMB, which increased from 14.8% to 35%. Microbial community analysis revealed that Clostridium was the dominant bacteria for H2 generation, and the IDFMB can improve the survival environment of microorganisms. This study provides a novel strategy for efficient energy recovery from food waste.


Assuntos
Microalgas , Reatores Biológicos , Fermentação , Hidrogênio , Lipídeos
7.
Bioresour Technol ; 272: 606-610, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30389248

RESUMO

Ultrasonic treatment was applied to enhance the biomass and lipid accumulation of mixotrophic microalgae. The optimal microalgal ultrasonic power, ultrasonic frequency, ultrasonic interval and growth phase were 20 W, 20 Hz, 2 s and logarithmic phase, respectively. The maximum biomass concentration and lipid content reached 2.78 g L-1 and 28.5%, which were 26.9% and 37% higher than those of the control group. Microscope analysis shows that ultrasonic exposure caused tiny cracks or holes on the surface of cell walls, but did not damage the integrity of algal cell structure. After ultrasonic stimulation, the permeability of membrane and the transport of nutrients were improved, and the utilization rate of substrate and pigment concentration increased 22.7% and 18.4%, respectively. However, excessive ultrasonic irradiation significantly inhibited the cell growth and lipid accumulation of microalgae. This study indicates the feasibility and efficiency of using low-strength ultrasound in promoting biomass and lipid production of microalgae.


Assuntos
Biomassa , Lipídeos/biossíntese , Microalgas/metabolismo , Ondas Ultrassônicas
8.
Bioresour Technol ; 252: 110-117, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29306713

RESUMO

Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L-1 and hydrogen yield of 131.7 mL g-1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L-1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L-1 d-1 (dark fermentation) to 17.3 kJ L-1 d-1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment.


Assuntos
Fermentação , Melaço , Águas Residuárias , Hidrogênio , Microalgas
9.
Biotechnol Biofuels ; 10: 260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151889

RESUMO

Background: The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. Results: In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L-1 day-1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was unfavorable to the production of chlorophyll a and b, which was mainly due to photooxidation effect. Polysaccharide was converted into lipid and protein when the light irradiation time increased from 0 to 12 h; however, further increasing irradiation time had a negative effect on lipid accumulation. Due to the dependence of autotrophically cultured cells on light energy, the light/dark cycle has a more remarkable influence on cellular metabolism under autotrophic conditions. Furthermore, the combined effects of temperature variation and light/dark cycle of 12 h/12 h on cell growth and lipid accumulation of microalgal mutant Z-4 were investigated under mixotrophic cultivation, and the results showed that biomass was mainly produced at higher temperatures during the day, and a portion of biomass was converted into lipid under dark condition. Conclusions: The extension of irradiation time was beneficial to biomass accumulation, but not in favor of lipid production. Even though effects of light/dark cycles on autotrophic and mixotrophic cells were not exactly the same, the optimal lipid productivities of Scenedesmus sp. Z-4 under both cultivation conditions were achieved at the light/dark of 12 h/12 h. This may be attributed to its long-term acclimation in natural environment. By combining temperature variation with optimal light/dark cycle of 12 h/12 h, this study will be of great significance for practical microalgae-biodiesel production in the outdoor conditions.

10.
Environ Sci Pollut Res Int ; 23(24): 25312-25322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27696162

RESUMO

Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.


Assuntos
Carbono/química , Carbono/metabolismo , Cisteína/farmacologia , Hidrogênio/metabolismo , Fotobiorreatores , Rodopseudomonas/efeitos dos fármacos , Acetatos , Biomassa , Fermentação , Floculação , Rodopseudomonas/metabolismo
11.
Water Res ; 93: 56-64, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26896823

RESUMO

Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste.


Assuntos
Biocombustíveis , Esgotos/química , Ultrassom/métodos , Eliminação de Resíduos Líquidos/métodos , Ácido Acético/metabolismo , Biodegradação Ambiental , Carboidratos/análise , Etanol/metabolismo , Fermentação , Firmicutes/metabolismo , Glucose/metabolismo , Hidrogênio/metabolismo , Melaço/análise , Rodopseudomonas/metabolismo , Esgotos/microbiologia
12.
Sci Rep ; 5: 16174, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26538350

RESUMO

Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.


Assuntos
Hidróxido de Cálcio/metabolismo , Fermentação/fisiologia , Hidrogênio/metabolismo , Hidroxiapatitas/metabolismo , Fotobiorreatores/microbiologia , Rodopseudomonas/fisiologia , Silicatos/metabolismo , Biomassa , Cisteína/metabolismo , Floculação , Luz , Rodopseudomonas/metabolismo , Esgotos/microbiologia
13.
Water Res ; 85: 404-12, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26364224

RESUMO

Anaerobic sludge (AS) and microalgae were co-cultured to enhance the energy conversion and nutrients removal from starch wastewater. Mixed ratio, starch concentration and initial pH played critical roles on the hydrogen and lipid production of the co-culture system. The maximum hydrogen production of 1508.3 mL L(-1) and total lipid concentration of 0.36 g L(-1) were obtained under the optimized mixed ratio (algae:AS) of 30:1, starch concentration of 6 g L(-1) and initial pH of 8. The main soluble metabolites in dark fermentation were acetate and butyrate, most of which can be consumed in co-cultivation. When sweet potato starch wastewater was used as the substrate, the highest COD, TN and TP removal and energy conversion efficiencies reached 80.5%, 88.7%, 80.1% and 34.2%, which were 176%, 178%, 200% and 119% higher than that of the control group (dark fermentation), respectively. This research provided a novel approach and achieved efficient simultaneous energy recovery and nutrients removal from starch wastewater by the co-culture system.


Assuntos
Conservação de Recursos Energéticos , Microalgas/metabolismo , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/metabolismo , Anaerobiose , Reatores Biológicos , Hidrogênio/metabolismo , Metabolismo dos Lipídeos , Amido
14.
Biotechnol Biofuels ; 8(1): 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25648915

RESUMO

BACKGROUND: Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. RESULTS: In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. CONCLUSIONS: The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover, simultaneous hydrogen and ethanol production were achieved by coupling E. harbinese B49 and R. faecalis RLD-53 in the IDPFR. According to stoichiometry, the hydrogen and ethanol production efficiencies were 82.67% and 82.19%, respectively. Therefore, IDPFR was an effective strategy for coupling DFB and PFB to fulfill efficient energy recovery from waste biomass.

15.
Bioresour Technol ; 169: 763-767, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037828

RESUMO

Effects of Fe(3+) (0-0.12 g/L), Mg(2+) (0-0.73 g/L) and Ca(2+) (0-0.98 g/L) on the biomass and lipid accumulation of heterotrophic microalgae were investigated in dark environment. The biomass and lipid production exhibited an increasing trend with increasing the concentrations of metal ions. In cultures with 1.2 × 10(-3) g/L Fe(3+), 7.3 × 10(-3) g/L Mg(2+) and 9.8 × 10(-4) g/L Ca(2+), the maximum biomass, total lipid content and lipid productivity reached 3.49 g/L, 47.4% and 275.7 mg/L/d, respectively. More importantly, EDTA addition (1.0 × 10(-3) g/L) could enhance the solubility of metal ions (iron and calcium) and increase their availability by microalgae, which evidently promote the lipid accumulation. Compared with the control, the total lipid content and lipid productivity increased 28.2% and 29.7%, respectively. These show that appropriate concentrations of metal ions and EDTA in the culture medium were beneficial to lipid accumulation of heterotrophic Scenedesmus sp. cells.


Assuntos
Ácido Edético/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metais/farmacologia , Microalgas/metabolismo , Cálcio/farmacologia , Íons , Ferro/farmacologia , Lipídeos/biossíntese , Magnésio/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Scenedesmus/efeitos dos fármacos , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/metabolismo
16.
Bioresour Technol ; 166: 625-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24953728

RESUMO

Growth and lipid production performance of Scenedesmus sp. under different culture modes were investigated. Under heterotrophic aerobic mode, algal biomass concentration and total lipid content reached 3.42 g L(-1) and 43.0 wt.%, which were much higher than those in autotrophic aerobic mode (0.55 g L(-1)/20.2 wt.%). The applied light exposure of 7.0 Wm(-2) was beneficial to biomass and lipid accumulation. Mixotrophic aerobic mode produced the highest biomass concentration of 3.84 g L(-1). The biomass was rich in lipids (51.3 wt.%) and low in proteins (17.9 wt.%) and carbohydrates (10.3 wt.%). However, lower algal biomass concentration (2.93 g L(-1)) and total lipid content (36.1 wt.%) were obtained in mixotrophic anaerobic mode. Mixotrophic aerobic mode gave the maximum heat value conversion efficiency of 45.7%. These results indicate that mixotrophic aerobic cultivation was a promising culture mode for lipid production by Scenedesmus sp.


Assuntos
Metabolismo dos Lipídeos , Microalgas/química , Técnicas de Cultura Celular por Lotes , Biomassa , Conservação de Recursos Energéticos , Microalgas/metabolismo
17.
Bioresour Technol ; 157: 355-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582427

RESUMO

A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation.


Assuntos
Biotecnologia/métodos , Escuridão , Fontes Geradoras de Energia , Fermentação , Hidrogênio/metabolismo , Lipídeos/biossíntese , Scenedesmus/metabolismo , Águas Residuárias/química , Acetatos/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , Etanol/farmacologia , Fermentação/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Compostos Orgânicos/isolamento & purificação , Scenedesmus/efeitos dos fármacos , Scenedesmus/crescimento & desenvolvimento
18.
Biotechnol Biofuels ; 6(1): 143, 2013 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24093331

RESUMO

BACKGROUND: Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae. RESULTS: A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10 g L-1) and nitrate (0.6 g L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46 g L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100 g L-1) and a wide range of pH (4.0-11.0). CONCLUSIONS: The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in the selection of oleaginous microalgae. The isolated novel green microalgal strain R-16 was rich in lipid and can live in varied and contrasting conditions. The algae appeared to have great potential for application in microalgae-based biodiesel production.

19.
Biotechnol Biofuels ; 6(1): 64, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23639008

RESUMO

BACKGROUND: Hydrogen recovered from organic wastes and solar energy by photo-fermentative bacteria (PFB) has been suggested as a promising bioenergy strategy. However, the use of PFB for hydrogen production generally suffers from a serious biomass washout from photobioreactor, due to poor flocculation of PFB. In the continuous operation, PFB cells cannot be efficiently separated from supernatant and rush out with effluent from reactor continuously, which increased the effluent turbidity, meanwhile led to increases in pollutants. Moreover, to replenish the biomass washout, substrate was continuously utilized for cell growth rather than hydrogen production. Consequently, the poor flocculability not only deteriorated the effluent quality, but also decreased the potential yield of hydrogen from substrate. Therefore, enhancing the flocculability of PFB is urgent necessary to further develop photo-fermentative process. RESULTS: Here, we demonstrated that L-cysteine could improve hydrogen production of Rhodopseudomonas faecalis RLD-53, and more importantly, simultaneously trigger remarkable aggregation of PFB. Experiments showed that L-cysteine greatly promoted the production of extracellular polymeric substances, especially secretion of protein containing more disulfide bonds, and help for enhancement stability of floc of PFB. Through formation of disulfide bonds, L-cysteine not only promoted production of EPS, in particular the secretion of protein, but also stabilized the final confirmation of protein in EPS. In addition, the cell surface elements and functional groups, especially surface charged groups, have also been changed by L-cysteine. Consequently, absolute zeta potential reached a minimum value at 1.0 g/l of L-cysteine, which obviously decreased electrostatic repulsion interaction energy based on DLVO theory. Total interaction energy barrier decreased from 389.77 KT at 0.0 g/l of L-cysteine to 127.21 kT at 1.0 g/l. CONCLUSIONS: Thus, the strain RLD-53 overcame the total energy barrier and flocculated effectively. After a short settlement, the biomass rush out will be significantly reduced and the effluent quality will be greatly improved in the continuous operation. Furthermore, aggregation of PFB could enable high biomass hold-up of photobioreactor, which allows the photobioreactor to operate at low hydraulic retention time and high organic loading rate. Therefore, the described flocculation behaviour during photo-hydrogen production is potentially suitable for practicable application.

20.
Ying Yong Sheng Tai Xue Bao ; 22(7): 1750-8, 2011 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-22007451

RESUMO

A field experiment was conducted in 2007-2010 to study the effects of no-tillage, subsoiling, and deep-ploughing combined with balanced fertilization, traditional fertilization, and no (or lower amount) fertilization on the soil water storage, crop yield, water use efficiency (WUE), and economic return of winter wheat-spring maize rotation field in Weibei highland. Among the tillage measures, no-tillage in fallow period had the best effect in soil water conservation, followed by sub-soiling, and deep-ploughing. The average water storage in 0-200 cm soil layer in crop growth period under no-tillage and sub-soiling was 6.7% and 1.9% higher than that under deep-ploughing, respectively. Under the balanced, traditional, and no (or lower amount) fertilizations, subsoiling all showed the highest yield, WUE, and economic return, with the best effect under balanced fertilization. The three-year crop yield under sub-soiling combined with balanced fertilization was 6909, 9689, and 5589 kg x hm(-2), WUE was 18.5, 25.2, and 23.0 kg x hm(-2) x mm(-1), and economic return was 5034, 5045, and 7098 yuan x hm(-2), respectively. It was suggested that balanced fertilization combined with sub-soiling had the best effect in soil water conservation and yield- and income increase, being the more appropriate fertilization and tillage mode for the wheat-maize rotation field in Weibei highland.


Assuntos
Agricultura/métodos , Biomassa , Triticum/crescimento & desenvolvimento , Água/análise , Zea mays/crescimento & desenvolvimento , Altitude , China , Fertilizantes , Estações do Ano , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA