Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 307: 125562, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648174

RESUMO

The effect of postharvest melatonin treatment on sulforaphane production of fresh-cut broccoli at 4℃ during storage was investigated in this study. Florets treated with 100 µM melatonin exhibited higher contents of total glucosinolates and sulforaphane. Glucoraphanin content was significantly increased after melatonin treatment, and which was explained by gene analysis. Expressions of glucoraphanin biosynthesis genes including Elong, CYP83A1, MYB28, UGT74B1 and FMOGS-OX1 were up-regulated while AOP2 was obviously decreased by melatonin treatment, leading to a higher glucoraphanin accumulation. In addition, application of melatonin enhanced the myrosinase activity and the expression level of MYO, benefiting the formation of sulforaphane. This study demonstrates that melatonin treatment positively affected the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli.

2.
Nanotechnology ; 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31639782

RESUMO

Transparent actuator can be used in variable-focus lens, tactical displays and so on. However, previous transparent actuators made with dielectric elastomer mostly required high driving voltages (> 1000 V) for actuation. In this work, we propose a new kind of low-voltage-driven transparent actuator, which is made with polymer and single-layer highly-oriented carbon nanotube (HOCNT) film composites, fully utilizing the favorable conductivity and high transparency of HOCNT film. The HOCNT-based transparent actuator shows a transmittance as high as 70%. When applying a voltage of 100 V, the transparent actuator bends visibly with a displacement of 14 mm. The actuation mechanism is a large volume change between polymers when they are Joule-heated by the electrical current. In addition, a solid-state lens based on the transparent actuator is fabricated, which demonstrates an obvious magnification effect with electrical-driven actuation. Finally, a bio-inspired optical system based on the solid-state lens is also constructed, which can mimic the focusing behavior of the human eyeball. The transparent actuator proposed in this work would have potential applications in optical devices, artificial muscles and soft robotics.

3.
Nanotechnology ; 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31627200

RESUMO

Highly-oriented carbon nanotube (CNT) film, which is made from super-aligned CNT array, is an even, tough and soft material. This CNT film has strong anisotropy in electrical and mechanical properties. The electrical conductivity and Young's modulus of the CNT film (2.8×104 S m-1, 3000 MPa) along the CNT aligned direction are one magnitude larger than those (2.3×103 S m-1, 200 MPa) along the vertical direction. In virtue of easy preparation and good processability, it is competent as high-performance flexible electrodes for soft actuators, advanced film capacitors and batteries. Here, we use this highly-oriented CNT film as heating electrode to make fast-response soft actuators. The actuator has thin bilayer composite structure and is driven by current heating. It takes a typical miniaturized actuator only 0.9 s to perform fast and large-angle deformations (270° bending, curvature 4.8 cm-1), and its bending speed can reach 300° s-1 by low power driving (2.4 W). Based on this CNT film, graphical designs and fine processing were carried out to make patterned electrodes and functional actuators, such as cross-shaped and hand-shaped ones. Notably, a well-designed gripper-like actuator can even deftly grab and manipulate some tiny things, e.g., a grain of rice. Moreover, the anisotropic properties of the CNT film also effectively influence and regulate the deformation forms of the actuators. In virtue of good and unique performances in electrical, mechanical and thermal aspects, the high-oriented CNT film would have promising application prospects in various emerging soft devices.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31617341

RESUMO

Planar supercapacitors (SCs) have been regarded as promising energy devices for on-chip electronics and they should be evaluated by areal performances due to the very limited available areas. However, these SCs usually suffer from inevitable size increase for the requirement of substrates, current collectors, and sealants. This work presents a kind of freestanding, foldable, and quasi-solid-state SCs that single SC units were stacked in the thickness direction with a common electrode to reduce their occupied areas. The foldable SCs can be fabricated in desired patterns by laser graving and their areal performances increase linearly with the assembled units. The energy density of a 5-unit foldable SC is 177.9 µWh cm-2 at the power density of 2.78 mW cm-2, and it outperforms most planar SCs. Therefore, this work provides a new reference to improve the areal properties of on-chip SCs from the device design aspect.

5.
Scand J Gastroenterol ; : 1-9, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31526198

RESUMO

Aims: Crohn's disease (CD) is a type of inflammatory bowel disease. The present study aimed to identify key genes and significant signaling pathways associated with CD by bioinformatics analysis. A total of 179 CD patients and 94 healthy controls from nine genome-wide gene expression datasets were included. Results: MMP1 and CLDN8 were two key genes screened from the differentially expressed genes. Connectivity Map predicted several small molecules as possible adjuvant drugs to treat CD. Besides, we used weighted gene coexpression network analysis to explore the functional modules involved in CD pathogenesis. Seven main functional modules were identified, of which black module showed the highest correlation with CD. The genes in black module mainly enriched in interferon signaling and defense response to virus. Blue module was another important module and enriched in several signaling pathways, including extracellular matrix organization, inflammatory response and blood vessel development. Conclusions: This study identified a number of key genes and pathways involved in CD and potential drugs to combat it, which might offer insights into CD pathogenesis and provide a clue to potential treatments.

6.
Genes (Basel) ; 10(8)2019 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426485

RESUMO

Circadian rhythms are biological rhythms with a period of approximately 24 h. While canonical circadian clock genes and their regulatory mechanisms appear highly conserved, the evolution of clock gene families is still unclear due to several rounds of whole genome duplication in vertebrates. The spotted gar (Lepisosteus oculatus), as a non-teleost ray-finned fish, represents a fish lineage that diverged before the teleost genome duplication (TGD), providing an outgroup for exploring the evolutionary mechanisms of circadian clocks after whole-genome duplication. In this study, we interrogated the spotted gar draft genome sequences and found that spotted gar contains 26 circadian clock genes from 11 families. Phylogenetic analysis showed that 9 of these 11 spotted gar circadian clock gene families have the same number of genes as humans, while the members of the nfil3 and cry families are different between spotted gar and humans. Using phylogenetic and syntenic analyses, we found that nfil3-1 is conserved in vertebrates, while nfil3-2 and nfil3-3 are maintained in spotted gar, teleost fish, amphibians, and reptiles, but not in mammals. Following the two-round vertebrate genome duplication (VGD), spotted gar retained cry1a, cry1b, and cry2, and cry3 is retained in spotted gar, teleost fish, turtles, and birds, but not in mammals. We hypothesize that duplication of core clock genes, such as (nfil3 and cry), likely facilitated diversification of circadian regulatory mechanisms in teleost fish. We also found that the transcription factor binding element (Ahr::Arnt) is retained only in one of the per1 or per2 duplicated paralogs derived from the TGD in the teleost fish, implicating possible subfuctionalization cases. Together, these findings help decipher the repertoires of the spotted gar's circadian system and shed light on how the vertebrate circadian clock systems have evolved.

7.
Food Chem ; 299: 125116, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31295637

RESUMO

The effects of exogenous melatonin treatment on the enzymatic browning and nutritional quality of fresh-cut pear fruit were investigated. Fresh-cut fruit soaked with 0, 0.05, 0.1 and 0.5 mM melatonin were stored at 4 °C. Our results showed that 0.1 mM melatonin treatment was optimal for reducing the surface browning and maintaining the titratable acidity of the fresh-cut fruit, which significantly decreased MDA and H2O2 contents and the growth of microorganism, enhanced total phenolic content and antioxidant capacity, and delayed the reduction of ascorbic acid. Furthermore, melatonin treatment at 0.1 mM decreased the expression of genes involving in enzymatic browning pathway including POD, PPO1, PPO5 and LOX1, and reduced PPO activity. Moreover, this treatment increased the expression of PAL and CHS, and enhanced PAL and CHS activities. These results showed that melatonin treatment might be a promising strategy to alleviate browning and improve the nutritional quality of fresh-cut pear fruit.


Assuntos
Frutas/efeitos dos fármacos , Melatonina/farmacologia , Valor Nutritivo , Pyrus/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Armazenamento de Alimentos , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Malondialdeído/análise , Malondialdeído/metabolismo , Fenóis/análise , Pyrus/química , Pyrus/genética , Pyrus/metabolismo
8.
Food Chem ; 293: 213-219, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151603

RESUMO

Soybean oil is often contaminated by aflatoxin B1 (AFB1) which is regarded as a class I carcinogen. The feasibility of rapid determination of AFB1 in soybean oil with terahertz spectroscopy was examined. t-SNE, as the pre-treatment method was used to get the best features and combined with different chemometrics including least squares-support vector machines (LS-SVM), back propagation neural network (BPNN), random forest (RF) and partial least squares (PLS) to find the best determination model. The excellent prediction results could be obtained using BPNN combined with t-SNE with correlation the coefficient of prediction (Rp) was 0.9948 and the root-mean-square error of prediction (RMSEP) was 0.7124 µg/kg. Besides, THz spectroscopy was proved to be feasible to detect AFB1 at 1 µg/kg in soybean oil (over 90% accuracy). It was concluded that THz spectroscopy together with chemometrics would be a promising technique for rapid determination of the AFB1 concentration in soybean oil.


Assuntos
Aflatoxina B1/análise , Óleo de Soja/química , Espectroscopia Terahertz/métodos , Análise dos Mínimos Quadrados , Análise de Componente Principal , Máquina de Vetores de Suporte
9.
Mol Plant Microbe Interact ; 32(10): 1336-1347, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31125282

RESUMO

Tritrophic interactions involving a biocontrol agent, a pathogen, and a plant have been analyzed predominantly from the perspective of the biocontrol agent. To explore the adaptive strategies of wheat in response to beneficial, pathogenic, and combined microorganisms, we performed the first comprehensive transcriptomic, proteomic, and biochemical analysis in wheat roots after exposure to Bacillus velezensis CC09, Gaeumannomyces graminis var. tritici, and their combined colonization, respectively. The transcriptional or translational programming of wheat roots inoculated with beneficial B. velezensis showed mild alterations compared with that of pathogenic G. graminis var. tritici. However, the combination of B. velezensis and G. graminis var. tritici activated a larger transcriptional or translational program than for each single microorganism, although the gene expression pattern was similar to that of individual infection by G. graminis var. tritici, suggesting a prioritization of defense against G. graminis var. tritici infection. Surprisingly, pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity made wheat pretreated with B. velezensis more sensitive to subsequent G. graminis var. tritici infection. Additionally, B. velezensis triggered a salicylic acid (SA)-dependent mode of induced systemic resistance that resembles pathogen-induced systemic acquired resistance. Wheat plants mainly depend on SA-mediated resistance, and not that mediated by jasmonic acid (JA), against the necrotrophic pathogen G. graminis var. tritici. Moreover, SA-JA interactions resulted in antagonistic effects regardless of the type of microorganisms in wheat. Further enhancement of SA-dependent defense responses such as lignification to the combined infection was shown to reduce the level of induced JA-dependent defense against subsequent infection with G. graminis var. tritici. Altogether, our results demonstrate how the hexaploid monocot wheat responds to beneficial or pathogenic microorganisms and prolongs the onset of take-all disease through modulation of cell reprogramming and signaling events.


Assuntos
Ascomicetos , Bacillus , Proteoma , Transcriptoma , Triticum , Ascomicetos/fisiologia , Bacillus/fisiologia , Triticum/genética , Triticum/microbiologia
10.
Bioorg Med Chem ; 27(3): 502-515, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606674

RESUMO

Tubulin-targeting drugs have increasingly become the focus of anticancer drugs research. Twenty-five novel benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives were synthesized and evaluated for bioactivity as potential tubulin polymerization inhibitors. Among them, compound 30 showed the most excellent inhibition against tubulin assembly (IC50 = 1.52 µM) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50 = 0.15, 0.21, 0.33 and 0.17 µM, respectively for A549, Hela, HepG2 and MCF-7). It could also validly induce A549 cell apoptosis, cause cell cycle arrest in G2/M phase and disrupt the cellular microtubule network. These results, along with molecular docking data, provided an important basis for further optimization of compound 30 as a potential anticancer agent.

11.
Cell Host Microbe ; 24(6): 791-803.e6, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543776

RESUMO

Increased glucose metabolism in immune cells not only serves as a hallmark feature of acute inflammation but also profoundly affects disease outcome following bacterial infection and tissue damage. However, the role of individual glucose metabolic pathways during viral infection remains largely unknown. Here we demonstrate an essential function of the hexosamine biosynthesis pathway (HBP)-associated O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling in promoting antiviral innate immunity. Challenge of macrophages with vesicular stomatitis viruses (VSVs) enhances HBP activity and downstream protein O-GlcNAcylation. Human and murine cells deficient of O-GlcNAc transferase, a key enzyme for protein O-GlcNAcylation, show defective antiviral immune responses upon VSV challenge. Mechanistically, O-GlcNAc transferase-mediated O-GlcNAcylation of the signaling adaptor MAVS on serine 366 is required for K63-linked ubiquitination of MAVS and subsequent downstream retinoic-acid inducible gene-like receptor -antiviral signaling activation. Thus, our study identifies a molecular mechanism by which HBP-mediated O-GlcNAcylation regulates MAVS function and highlights the importance of glucose metabolism in antiviral innate immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata/imunologia , N-Acetilglucosaminiltransferases/metabolismo , Infecções por Rhabdoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cercopithecus aethiops , Glucose/metabolismo , Células HEK293 , Células HT29 , Hexosaminas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , Infecções por Rhabdoviridae/virologia , Células THP-1 , Células Vero
12.
Adv Mater ; 30(49): e1805159, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30303571

RESUMO

Steam sterilization is widely used as one of the most reliable sterilization methods for public health. However, traditional steam sterilization mainly relies on electricity, a constrained resource for many developing countries and areas. The lack of available and affordable sterilization techniques in these areas is exposing human beings to a high risk of various epidemic diseases, and calls for the development of off-grid sterilization solutions. For the first time, the kinetic advantages of interfacial solar steam generation is fundamentally revealed and it is demonstrated that interfacial solar steam generation can enable fast-responsive (as short as 8.4 min for a full sterilization cycle) and energy-efficient (100 J mL-1 for steam reaching 121 °C) sterilization, superior to those of the conventional sterilization techniques. The key solar absorber is made of low cost and widely available biochar. A proof-of-concept sterilization system with a 10.5 L solar autoclave is built with very low cost of whole life-cycle and operates with minimum carbon footprint. Effective sterilization (≈99.999999% inactivation of pathogen), exceeding the requirements of Food and Drug Administration is demonstrated, making the sterilization strategy a promising and complementary personalized sterilization solution, particularly beneficial for off-grid areas.

13.
Artigo em Inglês | MEDLINE | ID: mdl-30240567

RESUMO

Based on porous carbon nanotube/polyaniline composite (CNT/PANI) and poly(vinyl alcohol) gel, we fabricated centimeter-sized hydrocapacitors with dual functions of energy conversion and storage with an efficient low-cost method. Owning to excellent hydrophily and large specific capacitance of CNT/PANI, the hydrocapacitors can easily convert energy from water movement induced by capillarity, gravity, or air pressure difference into electricity and store the generated electricity. Especially, sandwich-like hydrocapacitors outputted large current of 1.65 mA through an external load of 100 Ω, and hydrocapacitors showed good extendibility by connecting in series. To explain the mechanism of hydrocapacitors in this work, a possible model based on capillarity and traditional streaming potential was proposed and discussed. Hydrocapacitors here also provide a reference for future integration of nanogenerators and energy storage parts.

14.
Oncogene ; 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082910

RESUMO

Ectopic epigenetic mechanisms play important roles in facilitating tumorigenesis. Here, we first demonstrated that ANKDD1A is a functional tumor suppressor gene, especially in the hypoxia microenvironment. ANKDD1A directly interacts with FIH1 and inhibits the transcriptional activity of HIF1α by upregulating FIH1. In addition, ANKDD1A decreases the half-life of HIF1α by upregulating FIH1, decreases glucose uptake and lactate production, inhibits glioblastoma multiforme (GBM) autophagy, and induces apoptosis in GBM cells under hypoxia. Moreover, ANKDD1A is highly frequently methylated in GBM. The tumor-specific methylation of ANKDD1A indicates that it could be used as a potential epigenetic biomarker as well as a possible therapeutic target.

15.
J Food Sci Technol ; 55(8): 3292-3302, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30065441

RESUMO

Ultraviolet (UV) irradiation has been related to the extension shelf-life and maintenance of postharvest quality in fruits. However, the comparison of UV-B and UV-C treatment on the biosynthesis of phenolic compounds of grape remain unclear. This study provides a comparison on the mechanism of phenolic secondary metabolism at the same dose of 3.6 kJ m-2 UV treatment. Total phenolic compounds, total flavonoid, total flavanol, and total anthocyanin content and antioxidant activities of grapes after UV-C treatments were higher than those of the control and UV-B treatment. Among the evaluated parameters of individual phenolic compounds, the content of trans-resveratrol showed the highest percentage increase after the UV application. The transcriptions of PAL, CHS, F3H, LAR, ANS and STS were higher in grapes treated by UV-C than in those treated by UV-B. The CHS, LAR, ANS and STS genes were more induced in UV-B treatment than in control group. The same applied dose of UV-B or UV-C irradiation have different impact on gene expression and phenolic metabolites synthesis. The UV-C irradiation stimulated a higher gene expression of the phenolic compounds biosynthesis and also induced a greater accumulation of these metabolites at the same applied dose.

16.
Mol Ther ; 26(9): 2267-2281, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30037656

RESUMO

The epigenetics and genomics of glioblastoma (GBM) are complicated. Previous reports indicate that ELFN2 is widely distributed in the cerebral cortex neurons, striatum, and hippocampus cone and in granular cells. However, the function and mechanism of ELFN2, particularly in GBM, have rarely been explored. In this study, we identified ELFN2 as a new hypomethylation gene that acts as an oncogene in GBM. ELFN2 promoted cell autophagy by interacting with AurkA and eIF2α and inhibiting the activation of AurkA. We also demonstrated that aberrantly high ELFN2 expression is obtained due to hypomethylation of its promoter and abnormal miR-101 and LINC00470 expression in GBM. LINC00470 not only enhanced the expression of ELFN2 through adsorption of miR-101 but also affected the methylation level of ELFN2 by decreasing H3K27me3 occupancy. In addition, LINC00470 played a dominant role in the regulation of GBM cell autophagy, even though it upregulated ELFN2 expression. The results indicate that the combination of LINC00470 and ELFN2 has important significance for evaluating the prognosis of astrocytoma patients.

17.
Open Med (Wars) ; 13: 278-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30019008

RESUMO

BRAF mutations are known as oncogenic drivers of non-small cell lung cancer (NSCLC). BRAF inhibition has demonstrated anti-tumor activity in patients with BRAF V600E mutant NSCLC. Further molecular screening for novel BRAF thr599dup mutation is warranted. The novel BRAF Thr599dup gene mutation, for which the repeat amino acid-tyrosine is inserted between the 599th amino acid and the 600th amino acid in exon 15 of BRAF, was identified by next-generation sequencing (NGS) during routine clinical care in a lung carcinoma sample from an Asian never-smoker. Other putative driver alterations including EGFR, ALK were not found in that patient. BRAF Thr599dup gene mutation analysis was consistent with BRAF v600E gene mutation. Here we report a novel BRAF gene mutation with molecular characteristics consistent with those in BRAF-driven NSCLC. Our case expands the scope of BRAF gene mutations and provides broader molecular profiling for optimizing therapeutic options for patients with NSCLC. The new BRAF gene mutation has important clinical meaning for cancer patients.

18.
Front Immunol ; 9: 1557, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034397

RESUMO

Tumor-associated macrophages (TAMs) constitute a major component of inflammatory cells in the glioblastoma multiforme (GBM) tumor microenvironment. TAMs have been implicated in GBM angiogenesis, invasion, local tumor recurrence, and immunosuppression. Coagulation factor X (FX) is a vitamin K-dependent plasma protein that plays a role in the regulation of blood coagulation. In this study, we first found that FX was highly expressed and positively correlated with TAM density in human GBM. FX exhibited a potent chemotactic capacity to recruit macrophages and promoted macrophages toward M2 subtype polarization, accelerating GBM growth. FX bound to extracellular signal-related kinase (ERK)1/2 and inhibited p-ERK1/2 in GBM cells. FX was secreted in the tumor microenvironment and increased the phosphorylation and activation of ERK1/2 and AKT in macrophages, which may have been responsible for the M2 subtype macrophage polarization. Moreover, although the lncRNA CASC2c has been verified to function as a miR-101 competing endogenous RNA (ceRNA) to promote miR-101 target genes in GBM cells, we first confirmed that CASC2c did not function as a miR-338-3p ceRNA to promote FX expression, and that FX was a target gene of miR-338-3p. CASC2c interacted with and reciprocally repressed miR-338-3p. Both CASC2c and miR-388-3p bound to FX and commonly inhibited its expression and secretion. CASC2c repressed M2 subtype macrophage polarization. Taken together, our findings revealed a novel mechanism highlighting CASC2c and FX as potential therapeutic targets to improve GBM patients by altering the GBM microenvironment.

19.
J Hematol Oncol ; 11(1): 77, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866190

RESUMO

BACKGROUND: Despite the overwhelming number of investigations on AKT, little is known about lncRNA on AKT regulation, especially in GBM cells. METHODS: RNA-binding protein immunoprecipitation assay (RIP) and RNA pulldown were used to confirm the binding of LINC00470 and fused in sarcoma (FUS). Confocal imaging, co-immunoprecipitation (Co-IP) and GST pulldown assays were used to detect the interaction between FUS and AKT. EdU assay, CCK-8 assay, and intracranial xenograft assays were performed to demonstrate the effect of LINC00470 on the malignant phenotype of GBM cells. RT-qPCR and Western blotting were performed to test the effect of LINC00470 on AKT and pAKT. RESULTS: In this study, we demonstrated that LINC00470 was a positive regulator for AKT activation in GBM. LINC00470 bound to FUS and AKT to form a ternary complex, anchoring FUS in the cytoplasm to increase AKT activity. Higher pAKT activated by LINC00470 inhibited ubiquitination of HK1, which affected glycolysis, and inhibited cell autophagy. Furthermore, higher LINC00470 expression was associated with GBM tumorigenesis and poor patient prognosis. CONCLUSIONS: Our findings revealed a noncanonical AKT activation signaling pathway, i.e., LINC00470 directly interacts with FUS, serving as an AKT activator to promote GBM progression. LINC00470 has an important referential significance to evaluate the prognosis of patients.

20.
Nanotechnology ; 29(34): 345601, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29775440

RESUMO

Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA