Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
1.
Biomed Pharmacother ; 138: 111441, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33652261

RESUMO

Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-33625840

RESUMO

Achieving high-efficiency thick-film bulk heterojunction (BHJ) organic solar cells (OSCs) with thickness-independent power conversion efficiencies (PCEs) in a wide thickness range is still a challenge for the roll-to-roll printing techniques. The concept of diluting the transport sites within BHJ films with insulating polymers can effectively eliminate charge trapping states and optimize the charge transport. Herein, we first adopted the concept with insulating polypropylene (PP) in the efficient non-fullerene system (PM6:Y6) and demonstrated its potential to fabricate thick-film OSCs. The PP can form an insulating matrix prior to PM6 and Y6 within the BHJ film, resulting in an enhanced molecular interaction and isolated charge transport by expelling Y6 molecules. We thus observed reduced trap state density and improved charge transport properties in the PP-blended device. At around 300 nm, the PM6:Y6:PP device enjoys a high PCE of 15.5% and achieves over 100% of the efficiency of the optimal thin-film device, which is significantly improved compared to the binary PM6:Y6 counterpart. This research promotes an effective strategy with insulating polymers and provides knowledge of commercial production with response to the roll-to-roll technique demands.

3.
J Agric Food Chem ; 69(7): 2076-2086, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586965

RESUMO

Novel anti-viral natural product ε-poly-l-lysine (ε-PL) produced by Streptomyces is a homopolymer of l-lysine, of which the underlying molecular mode of action remains to be further elucidated. In this study, ε-PL induced significant fragmentation of tobacco mosaic virus (TMV) virions and delayed the systemic infection of TMV-GFP as well as wild-type TMV in plants. ε-PL treatment also markedly inhibited RNA accumulation of TMV in tobacco BY-2 protoplasts. The results of RNA-seq indicated that the agent induced significantly differential expression of genes that are associated with defense response, stress response, autophagy, and ubiquitination. Among them, 15 critical differential expressed genes were selected for real-time quantitative PCR validation. We further demonstrated that ε-PL can induce host defense responses by assessing the activity of several defense-related enzymes in plants. Our results provided valuable insights into molecular anti-viral mode of action for ε-PL, which is expected to be applied as a novel microbial natural product against plant virus diseases.

4.
Fungal Biol ; 125(3): 201-210, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33622536

RESUMO

Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including chaetoglobosin A production. Chaetoglobosin A is produced by Chaetomium globosum and has potential antifungal activity. Bioinformatics analysis of the chaetoglobosin A gene cluster (che) showed it that consists of nine open reading frames, including those encoding polyketide synthases (PKSs), PKS extender units, post-PKS modifications, and proposed regulators. Here, the role of the CgcheR regulator was investigated using gene disruption experiments. The CgcheR disruptant (ΔCgcheR) completely abolished the production of chaetoglobosin A, which was restored by the introduction of a copy of the wild-type CgcheR gene, suggesting that CgcheR is involved in chaetoglobosin A biosynthesis. A transcriptional analysis of the CgcheR disruptant indicated that CgCheR activates the transcription of chaetoglobosin biosynthetic genes in a pathway-specific manner. Furthermore, constitutive overexpression of CgcheR significantly improved the production of chaetoglobosin A from 52 to 260 mg/L. Surprisingly, CgcheR also played a critical role in sporulation; the CgcheR disruptant lost the ability to produce spores, suggesting that the regulator modulates cellular development. Our results not only shed light on the regulation of chaetoglobosin A biosynthesis, but also indicate a relationship between secondary metabolism and fungal morphogenesis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33605134

RESUMO

Benefitting from narrow band gap nonfullerene acceptors, continually increasing power conversion efficiency (PCE) endows organic solar cells (OSCs) with great potential for commercial application. Fabricating high-performance OSCs with potential for large-scale coating and nonhalogenated solvent processing is a necessity. Herein, we have proposed the use of nonhalogenated solvents combined with high-temperature blade coating to prepare a PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]):Y6 (2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)))blend active layer. The resultant OSCs deliver a PCE of 15.51% when the PM6:Y6 active layer is blade-coated at 90 °C in nonhalogenated o-xylene (o-XY) host solvent containing 1,2-dimethylnaphthalene (DMN) additive. It is found that high-temperature blade coating and nonhalogenated solvent additive DMN can suppress excessive aggregation of Y6 and enhance the crystallinity of PM6 and Y6 by regulating the dynamic process of active layer formation. Finally, an optimized blend morphology with nanofibrous phase separation and enhanced crystallinity are achieved for the PM6:Y6 active layer prepared with high-temperature blade coating and nonhalogenated o-XY:DMN solvents, which not only shortens the film-drying time but also leads to increased charge generation, transport, and collection efficiency. The 1.00 cm2 OSCs prepared with high-temperature blade coating and nonhalogenated solvents exhibit a high PCE of 13.87%. This approach shows great potential for large-area fabrication of OSCs.

6.
Acta Pharmacol Sin ; 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473182

RESUMO

Fingolimod has beneficial effects on multiple diseases, including type 1 diabetes (T1D) and numerous preclinical models of colitis. Intestinal dysbiosis and intestinal immune dysfunction contribute to disease pathogenesis of T1D. Thus, the beneficial effect of fingolimod on T1D may occur via the maintenance of intestinal homeostasis to some extent. Herein, we investigated the role of fingolimod in intestinal dysfunction in non-obese diabetic (NOD) mice and possible mechanisms. NOD mice were treated with fingolimod (1 mg · kg-1 per day, i.g.) from weaning (3-week-old) to 31 weeks of age. We found that fingolimod administration significantly enhanced the gut barrier (evidenced by enhanced expression of tight junction proteins and reduced intestinal permeability), attenuated intestinal microbial dysbiosis (evidenced by the reduction of enteric pathogenic Proteobacteria clusters), as well as intestinal immune dysfunction (evidenced by inhibition of CD4+ cells activation, reduction of T helper type 1 cells and macrophages, and the expansion of regulatory T cells). We further revealed that fingolimod administration suppressed the activation of CD4+ cells and the differentiation of T helper type 1 cells, promoted the expansion of regulatory T cells in the pancreas, which might contribute to the maintenance of pancreatic immune tolerance and the reduction of T1D incidence. The protection might be due to fingolimod inhibiting the toll-like receptor 2/4/nuclear factor-κB/NOD-like receptor protein 3 inflammasome pathway in the colon. Collectively, early-life fingolimod treatment attenuates intestinal microbial dysbiosis and intestinal immune dysfunction in the T1D setting, which might contribute to its anti-diabetic effect.

7.
Arch Microbiol ; 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398398

RESUMO

The composition of microorganisms in the gastrointestinal tract is closely related to the intestinal microenvironments and the exterior growth environments of host. In this study, 16S rDNA sequencing technology was adopted to investigate the influence of fermentation bed on the cecum microorganisms of ducks. Two feeding density treatment groups were set up, including group A (n = 4brids/m2) and group B (n = 6brids/m2). Samples were collected from the intermediate core fermentation layer (10-20 cm) of the fermented mattress materials and from the intestinal contents of ducks at 4, 6 and 8 weeks, respectively. Results showed that Bacteroidetes (20.12-27.17%) and Ruminococcaceae UCG-014 (2.97-10.1%) were the predominant microorganisms in duck cecum, while the Truepera (5.08-6.29%), Pricia (4.44-5.44%) and Luteimonas (3.62-4.99%) were the dominant microorganisms in fermentation mattress material. The cecum bacteria exhibited great difference among different growth periods of the ducks. Increasing the stocking density of ducks had a negative effect on the beneficial bacteria in the cecum. The microbial populations in fermentation mattress material were very different from that in the cecal. In summary, our findings can provide a scientific data for the rational use of fermentation bed feeding mode in poultry production.

8.
Dev Cell ; 56(4): 478-493.e11, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476555

RESUMO

The human genome harbors 14,000 duplicated or retroposed pseudogenes. Given their functionality as regulatory RNAs and low conservation, we hypothesized that pseudogenes could shape human-specific phenotypes. To test this, we performed co-expression analyses and found that pseudogene exhibited tissue-specific expression, especially in the bone marrow. By incorporating genetic data, we identified a bone-marrow-specific duplicated pseudogene, HBBP1 (η-globin), which has been implicated in ß-thalassemia. Extensive functional assays demonstrated that HBBP1 is essential for erythropoiesis by binding the RNA-binding protein (RBP), HNRNPA1, to upregulate TAL1, a key regulator of erythropoiesis. The HBBP1/TAL1 interaction contributes to a milder symptom in ß-thalassemia patients. Comparative studies further indicated that the HBBP1/TAL1 interaction is human-specific. Genome-wide analyses showed that duplicated pseudogenes are often bound by RBPs and less commonly bound by microRNAs compared with retropseudogenes. Taken together, we not only demonstrate that pseudogenes can drive human evolution but also provide insights on their functional landscapes.

9.
Sci Total Environ ; 766: 144606, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418262

RESUMO

Energy consumption has gradually become an important factor affecting the sustainable use of regional water resources, especially in areas with abundant energy but scarce water. In this research, the water consumption for energy production in arid Northwest China (NWC) in 2017 and 2030 was evaluated, and the virtual water (VW) transfer embodied in the energy trade was also calculated based on a large amount of data collected from multiple sources. The results showed that the energy-related water consumption in NWC in 2017 was 2.6 billion m3, accounting for approximately 3.4% of the total regional water consumption and 61.8% of the total regional industrial water consumption. This value is projected to reach 8.6 billion m3 in 2030 under a normal water consumption scenario (BAU scenario), and 5.4 and 3.6 billion m3 under a regular water-saving scenario (RWS scenario) and enhanced water-saving scenario (EWS scenario), respectively. In 2017, except for Qinghai and Gansu, the other province in the study area was a VW exporter and the total VW output volume was 710.3 million m3, accounting for 26.9% of the total water consumption for energy production, this ratio will reach approximately 60% in 2030 due to the expansion of energy industry. In addition, based on our research, the available water in four provinces cannot meet the future energy requirements under EWS scenario owing to the water shortage, however, different energy development strategies need to be selected faced with the different types of water shortage condition. This study also proposed some countermeasures to ensure the coordinated development of regional water and energy.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33485255

RESUMO

The results of randomized controlled trials (RCTs) investigating supplemental n-3 polyunsaturated fatty acids (PUFA) on muscle mass and function have been inconsistent. The present study aimed to quantitatively evaluate the effect of n-3 PUFA supplementation on indicators of muscle mass and function in healthy subjects. A systematic literature search was conducted up to July 2020 with databases of PubMed and Web of science. The random-effects model was implemented to calculate the weighted mean difference of net change of indicators regarding muscle mass and function. A total of nine studies (thirteen treatment groups) with 2067 participants were included for data analysis. The summary estimate showed that n-3 PUFA supplementation significantly increased the grip strength (1.17 kg; 95% CI: 0.27, 2.08 kg). Non-significant effect was observed with respect to muscle mass parameters, including fat mass (-0.67 kg; 95% CI: -2.20, 0.87 kg) and lean mass (0.33 kg; 95% CI: -0.35, 1.00 kg). Regarding muscle function indicators, there were non-significant effects on walking speed (-0.01 m•s-1; 95% CI: -0.03, 0.01 m•s-1), time up and go test (-0.25 s; 95% CI: -0.55, 0.04 s), respectively. The findings of this study indicated that supplementation with n-3 PUFA might have beneficial effects to improve muscle mass and function in healthy participants. However, there was no significant improvement in the subjects' muscle mass. Whether n-3 PUFA supplementation has favorable effects in participants with sarcopenia are warranted to be further investigated.

11.
Bioresour Technol ; 319: 124131, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33002784

RESUMO

In this study, the multiple effects of granular activated carbon (GAC) on sludge anaerobic digestion at ambient (16-24 °C), mesophilic (35 °C) and thermophilic (55 °C) temperature were investigated. After GAC addition, although the methane yields of raw sludge were reduced by 6.5%-36.9%, the lag phases of methanogenesis were shortened by 19.3%-30.6% and the reductions of methane yields were declined to only 5.9%-8.1% simultaneously for pretreated sludge. The inhibitory substances like phenols that generated by thermal pretreatment were reduced after GAC addition, which were demonstrated to be responsible for the methanogenic acceleration. Meanwhile, the methane reduction due to the non-selective adsorption by GAC could be mitigated by pretreatment and elevated temperature. Thus, a strategy coupling thermal pretreatment with detoxification by GAC was proposed to improve the methane production rate and avoid the negative effects during sludge anaerobic digestion with GAC addition.


Assuntos
Metano , Esgotos , Aceleração , Anaerobiose , Reatores Biológicos , Carvão Vegetal
12.
Waste Manag ; 121: 1-10, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341689

RESUMO

Anaerobic digestion is a feasible and promising technique to deal with emerging waste activated sludge issues. In this work, the hydrodynamics and digestion performance of horizontal anaerobic systems equipped with double-bladed impeller and ribbon impeller were investigated. Simulation using computational fluid dynamics technique visually showcased the favorable mixing status implementing ribbon impeller. The mixing modes were considered as the major motivation for the difference of mixing efficiencies. Tracing experiment indicated that the minimum thorough mixing time with ribbon impeller was 20 min at a rotation speed of 50 rpm, whereas it was 360 min for the double-bladed impeller under similar conditions. The superior mixing performance of ribbon impeller resulted in better anaerobic digestion and energy efficiency outputs. The digester employing ribbon impeller obtained an ultimate biogas yield of 340.38 ± 15.91 mL/g VS (corresponding methane yield of 210.34 ± 7.55 mL/g VS) and produced a surplus energy of 16.23 ± 0.76 MJ/(m3·d). This study thus ascertained that ribbon impeller was proficient for high-solid anaerobic digestion and it will prominently benefit future system designs.


Assuntos
Hidrodinâmica , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
13.
Entropy (Basel) ; 22(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33286716

RESUMO

In this paper is given a three-dimensional numerical simulation of the eddy current welding of rails where the longitudinal two directions are not ignored. In fact, usually it is considered a model where, in the two-dimensional numerical simulation of rail heat treatment, the longitudinal directions are ignored for the magnetic induction strength and temperature, and only the axial calculation is performed. Therefore, we propose the electromagnetic-thermal coupled three-dimensional model of eddy current welding. The induced eddy current heat is obtained by adding the z-axis spatial angle to the two-dimensional electromagnetic-thermal, thus obtaining some new results by coupling the numerical simulation and computations of the electric field and magnetic induction intensity of the three-dimensional model. Moreover, we have considered the objective function into a weak formulation. The three-dimensional model is then meshed by the finite element method. The electromagnetic-thermal coupling has been numerically computed, and the parametric dependence to the eddy current heating process has been fully studied. Through the numerical simulation with different current densities, frequencies, and distances, the most suitable heat treatment process of U75V rail is obtained.

14.
Acta Biomater ; 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33290912

RESUMO

Rheumatoid arthritis (RA) is a severe inflammatory autoimmune disease, but its treatment has been very difficult. Recently, stem cell-based therapies have opened up possibilities for the treatment of RA. However, the hostile RA pathological conditions impede the survival and differentiation of transplanted cells, and it remains challenging to fabricate a suitable biomaterial for the improvement of stem cells survival, engraftment, and function. Here we construct an optional scaffold for RA management through the integration of 3D printed porous metal scaffolds (3DPMS) and infliximab-based hydrogels. The presence of rigid 3DPMS is appropriate for repairing large-scale bone defects caused by RA, while the designed infliximab-based hydrogels are introduced because of their self-healable, anti-inflammatory, biocompatible, and biodegradable properties. We demonstrate that the bioengineered composite scaffolds support adipose-derived mesenchymal stem cells (ADSCs) proliferation, differentiation, and extracellular matrix production in vitro. The composite scaffolds, along with ADSCs, are then implanted into the critical-sized bone defect in the RA rabbit model. In vivo results prove that the bioengineered composite scaffolds are able to down-regulate inflammatory cytokines, rebuild damaged cartilage, as well as improve subchondral bone repair. To the best of the authors' knowledge, this is the first time that using the antirheumatic drug to construct hydrogels for stem cell-based therapies, and this inorganic-organic hybrid system has the potential to alter the landscape of RA study.

15.
J Tissue Eng ; 11: 2041731420974861, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294154

RESUMO

Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.

16.
Sci Adv ; 6(49)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33268357

RESUMO

Surface functionalization of metallic and semiconducting 2D transition metal dichalcogenides (TMDs) have mostly relied on physi- and chemi-sorption at defect sites, which can diminish the potential applications of the decorated 2D materials, as structural defects can have substantial drawbacks on the electronic and optoelectronic characteristics. Here, we demonstrate a spontaneous defect-free functionalization method consisting of attaching Au single atoms to monolayers of semiconducting MoS2(1H) via S-Au-Cl coordination complexes. This strategy offers an effective and controllable approach for tuning the Fermi level and excitation spectra of MoS2 via p-type doping and enhancing the thermal boundary conductance of monolayer MoS2, thus promoting heat dissipation. The coordination-based method offers an effective and damage-free route of functionalizing TMDs and can be applied to other metals and used in single-atom catalysis, quantum information devices, optoelectronics, and enhanced sensing.

17.
Cell Discov ; 6(1): 89, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298886

RESUMO

Definitive hematopoiesis generates hematopoietic stem/progenitor cells (HSPCs) that give rise to all mature blood and immune cells, but remains poorly defined in human. Here, we resolve human hematopoietic populations at the earliest hematopoiesis stage by single-cell RNA-seq. We characterize the distinct molecular profiling between early primitive and definitive hematopoiesis in both human embryonic stem cell (hESC) differentiation and early embryonic development. We identify CD44 to specifically discriminate definitive hematopoiesis and generate definitive HSPCs from hESCs. The multipotency of hESCs-derived HSPCs for various blood and immune cells is validated by single-cell clonal assay. Strikingly, these hESCs-derived HSPCs give rise to blood and lymphoid lineages in vivo. Lastly, we characterize gene-expression dynamics in definitive and primitive hematopoiesis and reveal an unreported role of ROCK-inhibition in enhancing human definitive hematopoiesis. Our study provides a prospect for understanding human early hematopoiesis and a firm basis for generating blood and immune cells for clinical purposes.

18.
Adv Healthc Mater ; : e2000604, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300246

RESUMO

Conductivity and alignment of scaffolds are two primary factors influencing the efficacy of nerve repair. Herein, conductive composite fibers composed of poly(ɛ-caprolactone) (PCL) and carbon nanotubes (CNTs) with different orientation degrees are prepared by electrospinning at various rotational speeds (0, 500, 1000, and 2000 rpm), and meanwhile the synergistic promotion mechanism of aligned topography and electrical stimulation on neural regeneration is fully demonstrated. Under an optimized rotational speed of 1000 rpm, the electrospun PCL fiber exhibits orientated structure at macroscopic (mean deviation angle = 2.78°) or microscopic crystal scale (orientation degree = 0.73), decreased contact angle of 99.2° ± 4.9°, and sufficient tensile strength in both perpendicular and parallel directions to fiber axis (1.13 ± 0.15 and 5.06 ± 0.98 MPa). CNTs are introduced into the aligned fiber for further improving conductivity (15.69-178.63 S m-1 ), which is beneficial to the oriented growth of neural cells in vitro as well as the regeneration of injured sciatic nerves in vivo. On the basis of robust cell induction behavior, optimum sciatic nerve function index, and enhanced remyelination/axonal regeneration, such conductive PCL/CNTs composite fiber with optimized fiber alignment may serve as instructive candidates for promoting the scaffold- and cell-based strategies for neural repair.

19.
J Sci Food Agric ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320966

RESUMO

BACKGROUND: Flavor loss is a common problem when manufacturing apple juice and is closely related to the properties of the colloidal pectin particles in cloudy juice. The flavor changes and particle properties of three varieties of apple juice ('Ralls', 'Golden Delicious' and 'Fuji') during processing were investigated. RESULTS: Compared with manually pressed juice, juice made by industrial pulping and filtration contained larger particles, resulting in the 'sweet and sour' taste of the juice being relatively weak and the diversity of aromas narrower, as determined by E-nose analysis. Pulping and filtration, however, released some important flavor esters, such as butyl butyrate, hexyl-2-methyl butyrate, and hexyl butyrate. The transformation of volatile compounds during apple juice processing was closely related to the apple cultivar but, in all three varieties, the content of 1-hexanal and (E)-2-hexenal in the juice gradually decreased during processing. Pectinase treatment reduced the colloid particle size and increased the ζ-potential of the juice, resulting in better uniformity and stability, as well as increasing the content of nonanal. After pasteurization, the colloidal particles tended to aggregate and the ζ-potential decreased. Many volatile compounds decreased in concentration or disappeared after heat treatment. CONCLUSION: The flavor and colloidal properties of cloudy apple juice changed markedly during processing and the effect of each processing step was different. © 2020 Society of Chemical Industry.

20.
Artigo em Inglês | MEDLINE | ID: mdl-33382420

RESUMO

CONTEXT: Extreme insulin resistance is caused by genetic defects intersecting with the insulin action pathway or by the insulin receptor antibodies. Insulin autoimmune syndrome (IAS) is not considered one of the causes of extreme insulin resistance. OBJECTIVE: To expand the current knowledge of extreme insulin resistance and to propose the diagnostic criteria and management strategy of a novel type of extreme insulin resistance. DESIGN, PARTICIPANTS AND MAIN OUTCOME MEASURES: A patient with IAS never experienced hypoglycaemia but had persistent hyperglycaemia and extreme insulin resistance with treatment with 200 U of intravenous insulin per day. Immunoreactive insulin (IRI), free insulin and total insulin were measured. The ratio of free insulin to total insulin (insulin-free ratio, IFR) was calculated. RESULTS: Extreme insulin resistance has not been reported to be caused by IAS. At admission, IRI and free insulin were undetectable in our patient; total insulin was more than 20160 pmol/l; and the IFR was lower than 0.03% (control: 90.9%). After adding 500 U porcine insulin to the precipitate containing insulin antibodies, the IRI was still undetectable. Since the patient started glucocorticoid therapy, the free insulin has gradually increased to 11.16 pmol/l, the total insulin has decreased to 5040 pmol/l, and the IFR has increased to 18.26%. Intravenous insulin was stopped, with good glycaemic control. CONCLUSIONS: High-affinity insulin autoantibodies with a large capacity can induce a novel type of extreme insulin resistance characterized by extremely high total insulin and very low free insulin levels. The IFR can be used to evaluate therapeutic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...