Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 67(35): 9851-9857, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418561

RESUMO

Arachidonic acid (ARA, C20:4) is a typical ω-6 polyunsaturated fatty acid with special functions. Using Yarrowia lipolytica as an unconventional chassis, we previously showed the performance of the Δ-6 pathway in ARA production. However, a significant increase in the Δ-9 pathway has rarely been reported. Herein, the Δ-9 pathway from Isochrysis galbana was constructed via pathway engineering, allowing us to synthesize ARA at 91.5 mg L-1. To further improve the ARA titer, novel enzyme fusions of Δ-9 elongase and Δ-8 desaturase were redesigned in special combinations containing different linkers. Finally, with the integrated pathway engineering and synthetic enzyme fusion, a 29% increase in the ARA titer, up to 118.1 mg/L, was achieved using the reconstructed strain RH-4 that harbors the rigid linker (GGGGS). The results show that the combined pathway and protein engineering can significantly facilitate applications of Y. lipolytica.


Assuntos
Ácido Araquidônico/biossíntese , Engenharia Metabólica , Yarrowia/genética , Yarrowia/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Glucose/metabolismo , Haptófitas/enzimologia
2.
Biotechnol Adv ; 33(8): 1522-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26248319

RESUMO

Non-conventional yeasts have attracted increasing interest due to their biochemical characteristics and potential applications. Yarrowia lipolytica is a non-conventional yeast with specific characteristics and physiology. The potential physiological and metabolic capabilities of Y. lipolytica, which can assimilate many different carbon sources, including typical hydrophilic and hydrophobic materials, are reviewed in this paper. Concerning the uptake and metabolism substrates, this review focuses particularly on low-cost raw materials, such as glycerol. Moreover, this review presents the results of safety studies of Y. lipolytica. Finally, the wide applications of Y. lipolytica, such as functional enzyme production, metabolite synthesis and environmental bioremediation, are reviewed in this paper. Recently, with the development of system biology and synthetic biology, it was concluded that these technologies will provide new opportunities for potential applications of Y. lipolytica in the future.


Assuntos
Biodegradação Ambiental , Carbono/metabolismo , Yarrowia/metabolismo , Biotecnologia/métodos , Glicerol/metabolismo , Yarrowia/enzimologia , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA