Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Nanoscale ; 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34611685

RESUMO

Tumor hypoxia hampers the therapeutic efficacy of photodynamic therapy (PDT) by hardly supplying sufficient oxygen to produce cytotoxic compounds. Herein a dual enzyme-mimicking radical generator has been developed for the in situ generation of oxygen and abundant radical oxygen species to enhance PDT efficacy under photoacoustic imaging guidance. A manganese-incorporating and photosensitizer-loaded metal organic framework exhibited both catalase-like and peroxidase-like catalytic activities specifically at the tumor microenvironment, leading to simultaneous series catalysis and parallel catalysis pathways. As a result, the MOF-based radical generator nanoparticles can not only supply oxygen for PDT to produce singlet oxygen, but also generate hydroxyl radicals, thus further enhancing the anti-cancer effect of PDT. In vitro and in vivo evaluation of the radical generator nanoparticles demonstrated the relieved tumor hypoxia microenvironment, remarkably increased level of reactive oxygen species, and significantly improved anti-cancer effect with desirable PA imaging capacity. This work presents a "series-parallel catalysis" strategy enabled by a MOF nanozyme to enhance PDT efficiency and provides new insights into a highly efficient and low-toxic anti-cancer approach.

3.
Int J Biol Macromol ; 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34673108

RESUMO

Yak yogurt, one of the naturally fermented dairy products prepared by local herdsmen in the Qinghai-Tibet Plateau, contains a diverse array of microorganisms. We isolated and identified a novel Streptococcus thermophilus strain, ZJUIDS-2-01, from the traditional yak yogurt. We further purified and carried out detailed structural, physiochemical, and bioactivity studies of an exopolysaccharide (EPS-3A) produced by S. thermophilus ZJUIDS-2-01. The weight-average molecular weight (Mw) of EPS-3A was estimated to be 1.38 × 106 Da by High-Performance Gel Permeation Chromatography (HPGPC). The monosaccharide analysis established its composition to be glucose, galactose, N-acetyl-D-galactosamine, and rhamnose in a ratio of 5.2:2.5:6.4:1.0. The molecular structure of EPS-3A was determined by the combination of permethylation analysis, FTIR, and NMR spectroscopic techniques. The ζ-potential measurements indicated that EPS-3A had a pKa value of ~4.40. The DSC yielded a melting point (Tm) of 80.4 °C and enthalpy change (ΔH) of 578 J/g for EPS-3A, comparable to those of the xanthan gum (XG), a commercial EPS. EPS-3A exhibited better O/W emulsion stability and flocculating capacity than XG. Furthermore, it also demonstrated comparable antioxidant activity to XG and promising in vitro antibacterial properties. This work evidenced that EPS-3A derived from S. thermophilus ZJUIDS-2-01 holds the potential for food and industrial applications.

4.
Food Res Int ; 149: 110682, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600684

RESUMO

Cow's milk is a highly-nutritious dairy product part of human diet worldwide. Rumen-protected methionine (RPM) is widely used to improve lactation performance of dairy cows, but understanding of the effects of RPM on milk nutrients composition are still limited. In this study, twenty mid-lactating dairy cows were supplemented with 20 gm/day RPM for 8 weeks to investigate the responses of milk nutritional composition to RPM. Metabolomics was applied for analyzing milk metabolites and 16S rRNA gene sequencing was used for analysis of rumen microbial composition. Milk fat content and yield were significantly increased after RPM supplementation. Totally 443 compounds belonging to 15 classes were identified, among which 15 metabolites were significantly changed. The functional nutrient α-ketoglutaric acid were significantly increased in the milk after RPM supplementation. We found 48 significantly differing bacterial genera in the rumen after supplementing RPM. Multi-omics integrated analysis revealed the higher abundance of Acetobacter, unclassified_f_Lachnospiraceae and Saccharofermentan contributed to the improved milk fat. In addition, the enriched abundance of Thermoactinomyces, Asteroleplasma, and Saccharofermentan showed positive correlations with higher α-ketoglutaric acid of milk. Our results uncover the metabolomic fingerprint and the key functional metabolites in the milk after supplementing RPM in dairy cows, as well as the key rumen bacteria associated with them. These findings provide novel insights into the development of functional dairy products that enriched the functional nutrient α-ketoglutaric acid or high milk fat.

5.
J Anim Sci Biotechnol ; 12(1): 110, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641957

RESUMO

BACKGROUND: This study investigated the protective effects of L. reuteri ZJ617 on intestinal and liver injury and the underlying mechanisms in modulating inflammatory, autophagy, and apoptosis signaling pathways in a piglet challenged with lipopolysaccharide (LPS). METHODS: Duroc × Landrace × Large White piglets were assigned to 3 groups (n = 6/group): control (CON) and LPS groups received oral phosphate-buffered saline for 2 weeks before intraperitoneal injection (i.p.) of physiological saline or LPS (25 µg/kg body weight), respectively, while the ZJ617 + LPS group was orally inoculated with ZJ617 for 2 weeks before i.p. of LPS. Piglets were sacrificed 4 h after LPS injection to determine intestinal integrity, serum biochemical parameters, inflammatory signaling involved in molecular and liver injury pathways. RESULTS: Compared with controls, LPS stimulation significantly increased intestinal phosphorylated-p38 MAPK, phosphorylated-ERK and JNK protein levels and decreased IκBα protein expression, while serum LPS, TNF-α, and IL-6 concentrations (P < 0.05) increased. ZJ617 pretreatment significantly countered the effects induced by LPS alone, with the exception of p-JNK protein levels. Compared with controls, LPS stimulation significantly increased LC3, Atg5, and Beclin-1 protein expression (P < 0.05) but decreased ZO-1, claudin-3, and occludin protein expression (P < 0.05) and increased serum DAO and D-xylose levels, effects that were all countered by ZJ617 pretreatment. LPS induced significantly higher hepatic LC3, Atg5, Beclin-1, SOD-2, and Bax protein expression (P < 0.05) and lower hepatic total bile acid (TBA) levels (P < 0.05) compared with controls. ZJ617 pretreatment significantly decreased hepatic Beclin-1, SOD2, and Bax protein expression (P < 0.05) and showed a tendency to decrease hepatic TBA (P = 0.0743) induced by LPS treatment. Pretreatment of ZJ617 before LPS injection induced the production of 5 significant metabolites in the intestinal contents: capric acid, isoleucine 1TMS, glycerol-1-phosphate byproduct, linoleic acid, alanine-alanine (P < 0.05). CONCLUSIONS: These results demonstrated that ZJ617 pretreatment alleviated LPS-induced intestinal tight junction protein destruction, and intestinal and hepatic inflammatory and autophagy signal activation in the piglets.

6.
Food Funct ; 12(20): 10171-10183, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34529747

RESUMO

Olives are a rich source of compounds with antioxidant and anti-inflammatory activities. This study was designed to investigate whether a standardized olive cake extract was able to alleviate oxidative stress, inflammation and intestinal villus damage in a model of lipopolysaccharide (LPS)-challenged piglets. Thirty weaned piglets (6.9 ± 0.9 kg) were assigned to five groups using a randomized complete block design. Piglets were fed a basal diet before intraperitoneal (i.p.) injection of physiological saline (C); fed a basal diet alone (CL) or fed a basal diet plus an olive cake extract (OL), antibiotics (AL), or olive cake extract plus antibiotics (OAL) before i.p. injection of LPS. The feeding period lasted for 2 weeks. Piglets were euthanized 4 h after the LPS injection. Systemic oxidative and inflammatory status and intestinal morphology were evaluated. LPS challenge significantly lowered the serum levels of GSH-Px, SOD and ALB and increased the serum concentration of MDA, NO, LDH, ALT, AST, TNF-α, IL-6, DAO and D-xylose (P < 0.05), as extracted from the comparison of piglets in the C and CL groups. Intestinal morphology was altered in the duodenum and ileum, displaying that the CL group had significantly lower villus height (VH), higher crypt depth (CD) and lower VH/CD compared with the control group (P < 0.05). Moreover, feed supplementation was able to partially mitigate the negative effects of LPS challenge in all groups (OL, AL, and OAL), as evidenced by the significantly increased serum levels of GSH-Px, SOD, ALB and IL-10 and decreased concentration of MDA, NO, LDH, ALT, AST, TNF-α, IL-6, DAO and D-xylose, compared with the CL group (P < 0.05). Alterations in intestinal morphology were also prevented and the OL, AL, and OAL groups had significantly lower CD and higher VH/CD compared with the CL group (P < 0.05), both in the ileum and duodenum. Furthermore, the positive effect in the relative abundance of intestinal Lactobacillus and Clostridium at the genus level was also observed for the OL group compared to the CL group. In summary, dietary supplementation with an olive cake extract stabilized the physiological condition of piglets subjected to an acute LPS challenge by reducing oxidative stress and the inflammatory status, improving intestinal morphology and increasing the abundance of beneficial intestinal bacteria. This trial was registered at Zhejiang University (http://www.lac.zju.edu.cn) as No. ZJU20170529.

7.
Animals (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34573609

RESUMO

Fifteen multiparous lactating Chinese Holstein dairy cows were used in a replicated 3 × 3 Latin Square Design to evaluate the effect of total mixed rations (TMR) containing unfermented and fermented yellow wine lees (YWL) on the oxidative status of heat-stressed lactating cows and the oxidative stability of the milk and milk fatty acids they produced. Cows were fed with three isonitrogenous and isocaloric diets as follows: (1) TMR containing 18% soybean meal, (2) TMR containing 11% unfermented YWL (UM), and (3) TMR containing 11% fermented YWL (FM). The rectal temperature (at 1300 h) and respiratory rate were higher in control cows than in cows fed UM or FM. Both types of YWL were greater in total phenolic and flavonoid contents, reducing power, and radical scavenging abilities than soybean meal. Cows fed UM or FM had higher blood neutrophil, white blood cell, and lymphocyte counts, as well as lower plasma malondialdehyde level, higher plasma superoxide dismutase, glutathione peroxidase, and 2,2-diphenyl-1-picryl-hydrazyl-hydrate levels, and higher total antioxidant capacity in the plasma than those fed control diet. The proportion of milk unsaturated fatty acids was higher and that of saturated fatty acids was lower in UM- and FM-fed animals than in the control animals. Milk from UM- and FM-fed cows had lower malondialdehyde content but higher 2,2-diphenyl-1-picryl-hydrazyl-hydrate content than the control cows. In conclusion, feeding TMR containing UM and FM to cows reduced both the oxidative stress in heat-stressed cows and improved the oxidative capacity of their milk.

8.
Appl Microbiol Biotechnol ; 105(18): 6819-6833, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432131

RESUMO

The goal of this work was to identify the target protein and epitope of a previously reported Escherichia coli O157:H7 (ECO157)-specific monoclonal antibody (mAb) 2G12. mAb 2G12 has shown high specificity for the recovery and detection of ECO157. To achieve this goal, the target protein was first separated by two-dimensional gel electrophoresis (2-DE) and located by Western blot (WB). The protein spots were identified to be the outer membrane protein (Omp) C by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After that, the target protein was purified by immunoaffinity chromatography (IAC) and subjected to in situ enzymatic cleavage of the vulnerable peptides. Eight eluted peptides of OmpC identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were further mapped onto the homologous protein structure of E. coli OmpC (2IXX). The topology of OmpC showed that three peptides had extracellular loops. Epitope mapping with overlapping peptide library and sequence homology analysis revealed that the epitope consisted of a specific peptide, "LGVING," and an adjacent conservative peptide, "TQTYNATRVGSLG." Both peptides loop around the overall structure of the epitope. To test the availability of the epitope when ECO157 was grown under different osmolarity, pH, and nutrition levels, the binding efficacy of mAb 2G12 with ECO157 grown in these conditions was evaluated. Results further demonstrated the good stability of this epitope under potential stressful environmental conditions. In summary, this study revealed that mAb 2G12 targeted one specific and one conservative extracellular loop (peptide) of the OmpC present on ECO157, and the epitope was stable and accessible on ECO157 cells grown in different environment. KEY POINTS: • OmpC is the target of a recently identified ECO157-specific mAb 2G12. • Eight peptides were identified from the OmpC by using LC-MS/MS. • The specificity of mAb 2G12 is mainly determined by the "LGVING" peptide.


Assuntos
Escherichia coli O157 , Sequência de Aminoácidos , Cromatografia Líquida , Epitopos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
9.
Mar Drugs ; 19(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34436243

RESUMO

Subclinical mastitis is one of the major problems affecting dairy animals' productivity and is classified based on milk somatic cell counts (SCC). Previous data showed that marine-derived Bacillus amyloliquefaciens-9 (GB-9) improved the immunity and the nonspecific immune defense system of the body. In this study, the potential role of GB-9 in improving subclinical mastitis was assessed with Radix Tetrastigmae (RT) as a positive control in subclinical mastitis Saanen dairy goats. The current data showed that GB-9 and RT significantly reduced the SCC in dairy goats. After being fed with GB-9 or RT, the decreased concentrations of malondialdehyde, IgA, IgM, IL-2, IL-4, and IL-6 were observed. The amplicon sequencing analysis of fecal samples revealed that GB-9 significantly altered the bacterial community. Bacteroides and Phascolarctobacterium were the major genera that respond to GB-9 feeding. The correlation analysis using weighted gene co-expression network analysis showed a MePink module was most associated with the serum concentrations of immunoglobulin and interleukin. The MePink module contained 89 OTUs. The feeding of GB-9 in decreasing the SCC was associated with the altered abundance of Bacteroides, which was correlated with the concentrations of immunoglobulins and chemokines. Collectively, the current data suggested that marine-derived GB-9 could be a helpful probiotic to control subclinical mastitis.

10.
Front Pharmacol ; 12: 699245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335264

RESUMO

Rheumatoid arthritis (RA) is a chronic, progressive, and systemic inflammatory autoimmune disease, characterized by synovial inflammation, synovial lining hyperplasia and inflammatory cell infiltration, autoantibody production, and cartilage/bone destruction. Macrophages are crucial effector cells in the pathological process of RA, which can interact with T, B, and fibroblast-like synovial cells to produce large amounts of cytokines, chemokines, digestive enzymes, prostaglandins, and reactive oxygen species to accelerate bone destruction. Therefore, the use of nanomaterials to target macrophages has far-reaching therapeutic implications for RA. A number of limitations exist in the current clinical therapy for patients with RA, including severe side effects and poor selectivity, as well as the need for frequent administration of therapeutic agents and high doses of medication. These challenges have encouraged the development of targeting drug delivery systems and their application in the treatment of RA. Recently, obvious therapeutic effects on RA were observed following the use of various types of nanomaterials to manipulate macrophages through intravenous injection (active or passive targeting), oral administration, percutaneous absorption, intraperitoneal injection, and intra-articular injection, which offers several advantages, such as high-precision targeting of the macrophages and synovial tissue of the joint. In this review, the mechanisms involved in the manipulation of macrophages by nanomaterials are analyzed, and the prospect of clinical application is also discussed. The objective of this article was to provide a reference for the ongoing research concerning the treatment of RA based on the targeting of macrophages.

11.
Anim Microbiome ; 3(1): 44, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210366

RESUMO

BACKGROUND: Antimicrobial resistance poses super challenges in both human health and livestock production. Rumen microbiota is a large reservoir of antibiotic resistance genes (ARGs), which show significant varations in different host species and lifestyles. To compare the microbiome and resistome between dairy cows and dairy buffaloes, the microbial composition, functions and harbored ARGs of rumen microbiota were explored between 16 dairy cows (3.93 ± 1.34 years old) and 15 dairy buffaloes (4.80 ± 3.49 years old) using metagenomics. RESULTS: Dairy buffaloes showed significantly different bacterial species (LDA > 3.5 & P < 0.01), enriched KEGG pathways and CAZymes encoded genes (FDR < 0.01 & Fold Change > 2) in the rumen compared with dairy cows. Distinct resistive profiles were identified between dairy cows and dairy buffaloes. Among the total 505 ARGs discovered in the resistome of dairy cows and dairy buffaloes, 18 ARGs conferring resistance to 16 antibiotic classes were uniquely detected in dairy buffaloes. Gene tcmA (resistance to tetracenomycin C) presented high prevalence and age effect in dairy buffaloes, and was also highly positively correlated with 93 co-expressed ARGs in the rumen (R = 0.98 & P = 5E-11). In addition, 44 bacterial species under Lactobacillus genus were found to be associated with tcmA (R > 0.95 & P < 0.001). L. amylovorus and L. acidophilus showed greatest potential of harboring tcmA based on co-occurrence analysis and tcmA-containing contigs taxonomic alignment. CONCLUSIONS: The current study revealed distinctive microbiome and unique ARGs in dairy buffaloes compared to dairy cattle. Our results provide novel understanding on the microbiome and resistome of dairy buffaloes, the unique ARGs and associated bacteria will help develop strategies to prevent the transmission of ARGs.

12.
Microorganisms ; 9(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205785

RESUMO

Tributyrin and essential oils have been used as alternatives to antimicrobials to improve gut health and growth performance in piglets. This study was to evaluate the effects of a dietary supplement with two encapsulated products containing different combinations of tributyrin with oregano or with methyl salicylate on growth performance, serum biochemical parameters related to the physiological status, intestinal microbiota and metabolites of piglets. A total of 108 weaned crossbred piglets (Yorkshire × Landrace, 21 ± 1 d, 8.21 ± 0.04 kg) were randomly divided into three groups. Piglets were fed with one of the following diets for 5 weeks: a basal diet as the control (CON); the control diet supplemented with an encapsulated mixture containing 30% of methyl salicylate and tributyrin at a dosage of 3 kg/t (CMT); and the control diet supplemented with an encapsulated mixture containing 30% of oregano oil and tributyrin at a dosage of 3 kg/t (COT). At the end of the feeding trial, six piglets from each group were slaughtered to collect blood and gut samples for physiological status and gut microbiological analysis. The study found that the CMT group was larger in feed intake (FI) (p < 0.05), average daily gain (ADG) (p = 0.09), total protein (TP), albumin (ALB), glutathione peroxidase (GSH-PX) (p < 0.05), blood total antioxidant capacity (T-AOC) (p < 0.05), and crypt depth in the ileum (p < 0.05) compared with the CON group. The genus abundance of Tissierella and Campylobacter in the CMT group was significantly decreased compared with the CON group. The CMT group also resulted in significantly higher activity in amino acid metabolism and arginine biosynthesis compared with the CON group. The COT group was larger in T-AOC, and the genus abundance of Streptophyta and Chlamydia was significantly increased in the ileum compared with the CON group. Data analysis found a significantly high correlation between the genus abundance of Chlamydia and that of Campylobacter in the ileum. The genus abundance of Campylobacter was also positively correlated with the sorbitol level. In general, the results indicated that the supplementation of both encapsulated mixtures in diet of weaned piglets could improve the animal blood antioxidant capacity. Additionally, the encapsulated mixture of methyl salicylate plus tributyrin improved the growth performance and resulted in certain corresponding changes in nutrient metabolism and in the genus abundance of ileum microbial community.

13.
Arch Virol ; 166(10): 2733-2741, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34322722

RESUMO

Congenital tremor (CT) type A-II in piglets is a worldwide disease caused by an emerging atypical porcine pestivirus (APPV). Preparation and evaluation of vaccines in laboratory animals is an important preliminary step toward prevention and control of the disease. Here, virus-like particles (VLPs) of APPV were prepared and VLPs vaccine was evaluated in BALB/c mice. Purified Erns and E2 proteins expressed in E. coli were allowed to self-assemble into VLPs, which had the appearance of hollow spherical particles with a diameter of about 100 nm by transmission electron microscopy (TEM). The VLPs induced strong antibody responses and reduced the viral load in tissues of BALB/c mice. The data from animal challenge experiments, RT-PCR, and immunohistochemical analysis demonstrated that BALB/c mice are an appropriate laboratory model for APPV. These results suggest the feasibility of using VLPs as a vaccine for the prevention and control of APPV and provide useful information for further study of APPV in laboratory animals.


Assuntos
Infecções por Pestivirus/prevenção & controle , Pestivirus/imunologia , Vacinação/veterinária , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Pestivirus/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Carga Viral , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
J Colloid Interface Sci ; 603: 17-24, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34186395

RESUMO

Performance of single-atom catalysis largely depends on the interaction between the metal and the supporter. Herein, ethylene glycol (EG) was used as a molecular bridge connecting Palladium (Pd) and bismuth oxybromide (BiOBr) to form atomically dispersed Pd catalyst (Pd-EG-BiOBr) for photocatalytic nitrogen fixation under ambient conditions. Compared with 0.20 wt% Pd-BiOBr, 0.20 wt% Pd-EG-BiOBr greatly promoted the photocatalytic nitrogen fixation activity, affording an ammonia formation rate of 124.63 µmol·h-1. The molecular bridge mechanism during catalyst formation and photocatalysis is speculated based on Transmission electron microscopy, In-situ Fourier transform infrared spectra, Electron spin resonance spectra, UV-vis diffuse reflectance spectra, Photoluminescence spectra and Density Functional Theory calculations. The results show that EG not only induces the formation of atomically dispersed Pd, but also enhances the electron density of Pd and activation capacity of nitrogen molecules. This work opens a new door to applications of atomically dispersed Pd supported catalysts for high efficiency photocatalytic nitrogen fixation.

15.
Front Chem ; 9: 679592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084766

RESUMO

Inducible nitric oxide synthase (iNOS) produces NO from l-arginine and plays critical roles in inflammation and immune activation. Selective and potent iNOS inhibitors may be potentially used in many indications, such as rheumatoid arthritis, pain, and neurodegeration. In the current study, five new compounds, including a dibenzo-α- pyrone derivative ellagic acid B (5) and four α-pyrones diaporpyrone A-D (9-12), together with three known compounds (6-8), were isolated from the endophytic fungus Diaporthe sp. CB10100. The structures of these new natural products were unambiguously elucidated using NMR, HRESIMS or electronic circular dichroism calculations. Ellagic acid B (5) features a tetracyclic 6/6/6/6 ring system with a fused 2H-chromene, which is different from ellagic acid (4) with a fused 2H-chromen-2-one. Both 2-hydroxy-alternariol (6) and alternariol (7) reduced the expression of iNOS at protein levels in a dose-dependent manner, using a lipopolysaccharide (LPS)-induced RAW264.7 cell models. Also, they decreased the protein expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein 1. Importantly, 6 and 7 significantly reduced the production of NO as low as 10 µM in LPS-induced RAW264.7 cells. Molecular docking of 6 and 7 to iNOS further suggests that both of them may interact with iNOS. Our study suggests that 6 and 7, as well as the alternariol scaffold may be further developed as potential iNOS inhibitors.

16.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34109433

RESUMO

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Figs. 3C and 5A were strikingly similar to data appearing in different form in another article by different authors, which had already been published elsewhere at the time of the present article's submission. Furthermore, cell Transwell assay data in the article (featured in Fig. 4B) were strikingly similar to data appearing in different form in other articles by different authors, which were either already under consideration for publication or had already been published elsewhere at the time of the present article's. Owing to the fact that the contentious data in the above article were either already under consideration for publication, or had already been published elsewhere, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office never received any reply. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 14: 4422­4428, 2016; DOI: 10.3892/mmr.2016.5769].

17.
Front Genet ; 12: 613197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012461

RESUMO

MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3' end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.

18.
Anim Nutr ; 7(1): 232-238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997352

RESUMO

The objective of this study was to investigate the effects of supplementing N-carbamoylglutamate (NCG), an Arg enhancer, on amino acid (AA) supply and utilization and productive performance of early-lactating dairy cows. Thirty multiparous Chinese Holstein dairy cows were randomly divided into control (CON, n = 15) and NCG (CON diet supplemented with NCG at 20 g/d per cow, n = 15) groups at 4 wk before calving. Diets were offered individually in tie-stalls, and NCG was supplemented by top-dress feeding onto total mixed ration for the NCG group. The experiment lasted until wk 10 after calving. Dry matter intake tended to be higher (P = 0.06), and yields of milk (P < 0.01), milk protein (P < 0.01), and milk fat (P < 0.01) were higher in the NCG-cows than in the CON-cows. Plasma activities of aspartate aminotransferase (P < 0.01), alanine aminotransferase (P = 0.03), and plasma level of ß-hydroxybutyrate (P = 0.04) were lower in the NCG-cows than in the CON-cows, whereas plasma glucose (P = 0.05) and nitric oxide (NO, P < 0.01) concentrations were higher. Coccygeal vein concentrations of Cys (P < 0.01), Pro (P < 0.01), Tyr (P = 0.05), most essential AA except Thr and His (P < 0.01), total essential AA (P < 0.01), and total AA (P < 0.01) were higher in the NCG-cows than in the CON-cows. The arterial supply of all AA was greater in the NCG-cows than in the CON-cows. The NCG-cows had higher mammary plasma flow of AA (P = 0.04) and clearance rate of Cys (P < 0.01), Pro (P < 0.01) and Asp (P < 0.01), and higher ratios of uptake to output of Met (P = 0.05), Lys (P < 0.01), Cys (P = 0.01), Pro (P = 0.03), and Asp (P = 0.01). In summary, addition of NCG initiated from the prepartum period improved the lactation performance of postpartum dairy cows, which might attribute to greater Arg and NO concentrations, as well as improved AA supply and utilization, liver function, and feed intake in these cows.

19.
Animals (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809487

RESUMO

Our previous transcriptomic study found that methionyl-methionine (Met-Met) exerts an anti-inflammatory effect in the bovine mammary epithelial cell (MAC-T) at a molecular level. However, evidence of whether the metabolic production of Met-Met confers protection was scarce. To investigate the inflammatory response and metabolite changes of Met-Met in lipopolysaccharide (LPS)-induced inflammation of MAC-T, mass spectrometry-based metabolomics and qPCR were conducted. The increased levels of IL-8, TNF-α, AP-1, and MCP-1 were reduced by pretreating with 2 mM Met-Met after LPS exposure. Metabolomics profiling analysis demonstrated that LPS induced significant alteration of metabolites, including decreased tryptophan, phenylalanine, and histidine levels and increased palmitic acid and stearic acid levels as well as purine metabolism disorder, whereas Met-Met reversed these changes significantly. Pathways analysis revealed that overlapping metabolites were mainly enriched in the cysteine and methionine metabolism, fatty acids biosynthesis, and purines degradation. Correlation networks showed that the metabolic profile was significantly altered under the conditions of inflammation and Met-Met treatment. Collectively, Met-Met might relieve MAC-T cell inflammation via hydrolysate methionine, which further changes the processes of amino acid, purine, and fatty acid metabolism.

20.
Curr Alzheimer Res ; 18(2): 125-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855945

RESUMO

BACKGROUND: Weight loss is a common phenomenon among the elderly and is identified as an important indicator of health status. Many epidemiology studies have investigated the association between weight loss and dementia, but the results were inconsistent. OBJECTIVE: To examine and determine the association between weight loss and the risk of dementia. METHODS: Eligible cohort studies involving weight loss and dementia were searched from PubMed, Embase, and Ovid databases through October 2018. Pooled relative risks (RRs) with its 95% confidence intervals (CIs) were used to estimate the effects of weight loss on the risk of dementia. Subgroup and sensitivity analyses were performed to explore the potential sources of heterogeneity. The Begg's test and Egger's test were used to assess the publication bias. RESULTS: A total of 20 cohort studies with 38,141 participants were included in this meta-analysis. Weight loss was significantly associated with the risk of dementia (RR=1.26, 95% CI=1.15-1.38). BMI decline ≥0.8 units (RR=1.31, 95% CI=1.10-1.56) and ≥4% (RR=1.19, 95% CI=1.03-1.38) could increase the risk of dementia. The risk of all-cause dementia for people with weight loss increased by 31% (RR=1.31, 95% CI=1.15-1.49), and 25% higher for incident Alzheimer's disease (RR=1.25, 95% CI=1.07-1.46). Weight loss in participants with normal weight had a similar dementia risk (RR=1.21, 95% CI=1.06-1.38) with the overweight individuals (RR=1.22, 95% CI=1.11-1.34). CONCLUSION: Weight loss may be associated with an increased risk of dementia, especially for Alzheimer's disease. Maintaining weight stability may help prevent dementia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...