Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e1907105, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32020742

RESUMO

All-optical modulators are attracting significant attention due to their intrinsic perspective on high-speed, low-loss, and broadband performance, which are promising to replace their electrical counterparts for future information communication technology. However, high-power consumption and large footprint remain obstacles for the prevailing nonlinear optical methods due to the weak photon-photon interaction. Here, efficient all-optical mid-infrared plasmonic waveguide and free-space modulators in atomically thin graphene-MoS2 heterostructures based on the ultrafast and efficient doping of graphene with the photogenerated carrier in the monolayer MoS2 are reported. Plasmonic modulation of 44 cm-1 is demonstrated by an LED with light intensity down to 0.15 mW cm-2 , which is four orders of magnitude smaller than the prevailing graphene nonlinear all-optical modulators (≈103 mW cm-2 ). The ultrafast carrier transfer and recombination time of photogenerated carriers in the heterostructure may achieve ultrafast modulation of the graphene plasmon. The demonstration of the efficient all-optical mid-infrared plasmonic modulators, with chip-scale integrability and deep-sub wavelength light field confinement derived from the van der Waals heterostructures, may be an important step toward on-chip all-optical devices.

2.
Extremophiles ; 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32025854

RESUMO

Volatile organic compounds (VOCs) are important environmental factors because they supply nutrients for microbial cells and mediate intercellular interactions. However, few studies have focused on the effects of VOCs on prokaryotic diversity and community composition. In this study, we examined the relationship between prokaryotic diversity and community composition and the content of VOCs in salt-lake sediments from the Tibet Plateau using amplicon sequencing of the 16S rRNA gene. Results showed that the alpha-diversity indices (Chao1, Shannon, and Simpson) were generally negatively correlated with the content of 36 VOCs (P < 0.05). The prokaryotic communities were significantly driven by multiple VOCs at the lineage-dependent pattern (P < 0.05). Further analysis indicated that VOCs, including 3-methylpyruvate, biuret, isocitric acid, and stearic acid, jointly explained 37.3% of the variations in prokaryotic communities. Supplemental VOCs-pyruvate, biuret, alanine, and aspartic acid-notably decreased the Chao1 and Shannon indices and significantly assembled co-occurrence networks for the bacterial communities in the saline sediments. Together, these results demonstrated that VOCs play a critical role in the regulation of the diversity, compositions, and network structures of prokaryotic communities in saline sediments.

3.
ACS Nano ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32031780

RESUMO

Wafer-scale monocrystalline two-dimensional (2D) materials can theoretically be grown by seamless coalescence of individual domains into a large single crystal. Here we present a concise study of the coalescence behavior of crystalline 2D films using a combination of complementary in situ methods. Direct observation of overlayer growth from the atomic to the millimeter scale and under model- and industrially relevant growth conditions reveals the influence of the film-substrate interaction on the crystallinity of the 2D film. In the case of weakly interacting substrates, the coalescence behavior is dictated by the inherent growth kinetics of the 2D film. It is shown that the merging of coaligned domains leads to a distinct modification of the growth dynamics through the formation of fast-growing high-energy edges. The latter can be traced down to a reduced kink-creation energy at the interface between well-aligned domains. In the case of strongly interacting substrates, the lattice mismatch between film and substrate induces a pronounced moiré corrugation that determines the growth and coalescence behavior. It furthermore imposes additional criteria for seamless coalescence and determines the structure of grain boundaries. The experimental findings, obtained here for the case of graphene, are confirmed by theory-based growth simulations and can be generalized to other 2D materials that show 3- or 6-fold symmetry. Based on the gained understanding of the relation between film-substrate interaction, shape evolution, and coalescence behavior, conditions for seamless coalescence and, thus, for the optimization of large-scale production of monocrystalline 2D materials are established.

4.
J Theor Biol ; 486: 110085, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31758966

RESUMO

The control strategies of emergency infectious diseases are constrained by limited medical resources. The fractional dose vaccination strategy as one of feasible strategies was proposed in response to global shortages of vaccine stockpiles. Although a variety of epidemic models have been developed under the circumstances of limited resources in treatment, few models particularly investigated vaccination strategies in resource-limited settings. In this paper, we develop a two-group SIR model with incorporation of proportionate mixing patterns and n-fold fractional dose vaccination related parameters to evaluate the efficiency of fractional dose vaccination on disease control at the population level. The existence and uniqueness of the final size of the two-group SIR epidemic model, the formulation of the basic reproduction number and the relationship between them are established. Moreover, numerical simulations are performed based on this two-group vector-free model to investigate the effectiveness of n-fold fractional dose vaccination by using the emergency outbreaks of yellow fever in Angola in 2016. By employing linear and nonlinear dose-response relationships, we compare the resulting fluctuations of four characteristics of the epidemics, which are the outbreak size, the peak time of the outbreak, the basic reproduction number and the infection attack rate (IAR). For both types of dose-response relationships, dose-fractionation takes positive effects in lowering the outbreak size, delay the peak time of the outbreak, reducing the basic reproduction number and the IAR of yellow fever only when the vaccine efficacy is high enough. Moreover, five-fold fractional dose vaccination strategy may not be the optimal vaccination strategy as proposed by the World Health Organization if the dose-response relationship is nonlinear.

5.
Sci Adv ; 5(11): eaav4355, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700996

RESUMO

Recently, several captivating topological structures of electric dipole moments (e.g., vortex, flux closure) have been reported in ferroelectrics with reduced size/dimensions. However, accurate polarization distribution of these topological ferroelectric structures has never been experimentally obtained. We precisely measure the polarization distribution of an individual ferroelectric vortex in PbTiO3/SrTiO3 superlattices at the subunit cell level by using the atomically resolved integrated differential phase contrast imaging in an aberration-corrected scanning transmission electron microscope. We find, in vortices, that out-of-plane polarization is larger than in-plane polarization, and that downward polarization is larger than upward polarization. The polarization magnitude is closely related to tetragonality. Moreover, the contribution of the Pb─O bond to total polarization is highly inhomogeneous in vortices. Our precise measurement at the subunit cell scale provides a sound foundation for mechanistic understanding of the structure and properties of a ferroelectric vortex and lattice-charge coupling phenomena in these topological ferroelectric structures.

6.
Front Oncol ; 9: 993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632919

RESUMO

Glioblastoma (GBM) is the most prevalent malignant tumor in the central nervous system. Aerobic glycolysis, featured with elevated glucose consumption and lactate production, confers selective advantages on GBM by utilizing nutrients to support rapid cell proliferation and tumor growth. Pyruvate kinase 2 (PKM2), the last rate-limiting enzyme of glycolysis, is known to regulate aerobic glycolysis, and considered as a novel cancer therapeutic target. Herein, we aim to describe the cellular functions and mechanisms of a small molecular compound dimethylaminomicheliolide (DMAMCL), which has been used in clinical trials for recurrent GBM in Australia. Our results demonstrate that DMAMCL is effective on the inhibition of GBM cell proliferation and colony formation. MCL, the active metabolic form of DMAMCL, selectively binding to monomeric PKM2 and promoting its tetramerization, was also found to improve the pyruvate kinase activity of PKM2 in GBM cells. In addition, non-targeting metabolomics analysis reveals multiple metabolites involved in glycolysis, including lactate and glucose-6-phosphate, are decreased with DMAMCL treatment. The inhibitory effects of DMAMCL are observed to decrease in GBM cells upon PKM2 depletion, further confirming the importance of PKM2 in DMAMCL sensitivity. In conclusion, the activation of PKM2 by DMAMCL results in the rewiring aerobic glycolysis, which consequently suppresses the proliferation of GBM cells. Hence, DMAMCL represents a potential PKM2-targeted therapeutic agent against GBM.

7.
Nat Commun ; 10(1): 4891, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653837

RESUMO

Strong-field photoemission produces attosecond (10-18 s) electron pulses that are synchronized to the waveform of the incident light. This nonlinear photoemission lies at the heart of current attosecond technologies. Here we report a new nonlinear photoemission behaviour-the nonlinearity in strong-field regime sharply increases (approaching 40th power-law scaling), making use of sub-nanometric carbon nanotubes and 800 nm pulses. As a result, the carrier-envelope phase sensitive photoemission current shows a greatly improved modulation depth of up to 100% (with a total modulation current up to 2 nA). The calculations reveal that the behaviour is an interplay of valence band optical-field emission with charge interaction, and the nonlinear dynamics can be tunable by changing the bandgap of carbon nanotubes. The extreme nonlinear photoemission offers a new means of producing extreme temporal-spatial resolved electron pulses, and provides a new design philosophy for attosecond electronics and photonics.

8.
ACS Nano ; 13(9): 10272-10278, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31430126

RESUMO

High-quality graphene film grown on dielectric substrates by a direct chemical vapor deposition (CVD) method promotes the application of high-performance graphene-based devices in large scale. However, due to the noncatalytic feature of insulating substrates, the production of graphene film on them always has a low growth rate and is time-consuming (typically hours to days), which restricts real potential applications. Here, by employing a local-fluorine-supply method, we have pushed the massive fabrication of a graphene film on a wafer-scale insulating substrate to a short time of just 5 min without involving any metal catalyst. The highly enhanced domain growth rate (∼37 nm min-1) and the quick nucleation rate (∼1200 nuclei min-1 cm-2) both account for this high productivity of graphene film. Further first-principles calculation demonstrates that the released fluorine from the fluoride substrate at high temperature can rapidly react with CH4 to form a more active carbon feedstock, CH3F, and the presence of CH3F molecules in the gas phase much lowers the barrier of carbon attachment, providing sufficient carbon feedstock for graphene CVD growth. Our approach presents a potential route to accomplish exceptionally large-scale and high-quality graphene films on insulating substrates, i.e., SiO2, SiO2/Si, fiber, etc., at low cost for industry-level applications.

9.
Nanoscale ; 11(37): 17195-17200, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31334538

RESUMO

Hybrid structures assembled by van der Waals (vdW) interactions greatly expand the conventional material platforms, as there is no constraint of lattice matching in the materials design. However, a general challenge lies in the controllable assembly of 1D-2D hybrids with strong-coupled interfaces, because the interaction area is very small and is easily disturbed by exotic molecules. Here, we report the direct construction of 1D carbon nanotube-2D MoS2 monolayer hybrids with strong interfacial coupling using a sequential chemical vapour deposition growth method. The strong mechanical and electronic couplings between the nanotubes and MoS2 are unambiguously illustrated from the Raman-mode frequency shift and ultrafast interfacial charge transfer (∼100 fs). The findings in this work will boost the mass fabrication of 1D-2D vdW hybrid materials with controllable interfacial geometry and coupling strength, and pave the way for their future applications in electronics, optoelectronics and photovoltaics.

10.
Nat Chem ; 11(8): 730-736, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31308494

RESUMO

Two-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2). When growing graphene by chemical vapour deposition on a copper foil, fluorine released from the decomposition of a metal fluoride placed near the copper foil greatly accelerates the growth of the graphene (up to a rate of ~200 µm s-1). Theoretical calculations show that it does so by promoting decomposition of the methane feedstock, which converts the endothermic growth process to an exothermic one. We further show that the presence of fluorine also accelerates the growth of two-dimensional hexagonal boron nitride and WS2.

11.
Nat Commun ; 10(1): 3457, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358759

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nature ; 570(7759): 91-95, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118514

RESUMO

The development of two-dimensional (2D) materials has opened up possibilities for their application in electronics, optoelectronics and photovoltaics, because they can provide devices with smaller size, higher speed and additional functionalities compared with conventional silicon-based devices1. The ability to grow large, high-quality single crystals for 2D components-that is, conductors, semiconductors and insulators-is essential for the industrial application of 2D devices2-4. Atom-layered hexagonal boron nitride (hBN), with its excellent stability, flat surface and large bandgap, has been reported to be the best 2D insulator5-12. However, the size of 2D hBN single crystals is typically limited to less than one millimetre13-18, mainly because of difficulties in the growth of such crystals; these include excessive nucleation, which precludes growth from a single nucleus to large single crystals, and the threefold symmetry of the hBN lattice, which leads to antiparallel domains and twin boundaries on most substrates19. Here we report the epitaxial growth of a 100-square-centimetre single-crystal hBN monolayer on a low-symmetry Cu (110) vicinal surface, obtained by annealing an industrial copper foil. Structural characterizations and theoretical calculations indicate that epitaxial growth was achieved by the coupling of Cu <211> step edges with hBN zigzag edges, which breaks the equivalence of antiparallel hBN domains, enabling unidirectional domain alignment better than 99 per cent. The growth kinetics, unidirectional alignment and seamless stitching of the hBN domains are unambiguously demonstrated using centimetre- to atomic-scale characterization techniques. Our findings are expected to facilitate the wide application of 2D devices and lead to the epitaxial growth of broad non-centrosymmetric 2D materials, such as various transition-metal dichalcogenides20-23, to produce large single crystals.

13.
Nanoscale ; 11(15): 7474-7480, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30942225

RESUMO

For alkali-metal ion batteries, revealing the phase transformation and the ion migration dynamics in the electrodes is vital for understanding how the electrodes work and thereby how we can improve them. Here, using in situ transmission electron microscopy, we track the structural evolution and migration dynamics during sodium insertion into TiS2 nanostructures with the lattice fringe resolution. We find that the sodiation process of TiS2 is initiated by an intercalation reaction and followed by a conversion reaction. From the same reaction event, the velocity of intercalation/conversion phase boundary migration is found to be ∼1.0-1.7 nm s-1, while the pristine/intercalation phase boundary migrates at a velocity of ∼2.5 nm s-1. The sodium migration leads to structural fracture to form nanometer-sized domains (∼3 nm) with volume expansion. During migration, Na prefers to transport along specific directions. Furthermore, a superstructured Na0.25TiS2 intermediate phase with ordered Na ions occupied within the (0001) plane is formed at the reaction front, which is different from the common staging phase. These findings help us understand the working principle and the failure mechanism of the sodium ion battery and also provide useful insights into the general ionic doping of transition metal dichalcogenides.

14.
Proc Natl Acad Sci U S A ; 116(20): 9741-9746, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31010932

RESUMO

Sunlight drives photosynthesis and associated biological processes, and also influences inorganic processes that shape Earth's climate and geochemistry. Bacterial solar-to-chemical energy conversion on this planet evolved to use an intricate intracellular process of phototrophy. However, a natural nonbiological counterpart to phototrophy has yet to be recognized. In this work, we reveal the inherent "phototrophic-like" behavior of vast expanses of natural rock/soil surfaces from deserts, red soils, and karst environments, all of which can drive photon-to-electron conversions. Using scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy, and X-ray absorption spectroscopy, Fe and Mn (oxyhydr)oxide-rich coatings were found in rock varnishes, as were Fe (oxyhydr)oxides on red soil surfaces and minute amounts of Mn oxides on karst rock surfaces. By directly fabricating a photoelectric detection device on the thin section of a rock varnish sample, we have recorded an in situ photocurrent micromapping of the coatings, which behave as highly sensitive and stable photoelectric systems. Additional measurements of red soil and powder separated from the outermost surface of karst rocks yielded photocurrents that are also sensitive to irradiation. The prominent solar-responsive capability of the phototrophic-like rocks/soils is ascribed to the semiconducting Fe- and Mn (oxyhydr)oxide-mineral coatings. The native semiconducting Fe/Mn-rich coatings may play a role similar, in part, to photosynthetic systems and thus provide a distinctive driving force for redox (bio)geochemistry on Earth's surfaces.

15.
Org Biomol Chem ; 17(17): 4326-4334, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30976765

RESUMO

An unnatural monosaccharide with a C6-azide, Ac36AzGalNAc, has been developed as a potent and selective probe for O-GlcNAc-modified proteins. Combined with click chemistry, we demonstrate that Ac36AzGalNAc can robustly label O-GlcNAc glycosylation in a wide range of cell lines. Meanwhile, cell imaging and LC-MS/MS proteomics verify its selective activity on O-GlcNAc. More importantly, the protocol presented here provides a general methodology for tracking, capturing and identifying unnatural monosaccharide modified proteins in cells or cell lysates.


Assuntos
Galactosamina/química , Sondas Moleculares/química , N-Acetilglucosaminiltransferases/análise , beta-N-Acetil-Hexosaminidases/análise , Animais , Células Cultivadas , Galactosamina/análogos & derivados , Galactosamina/síntese química , Humanos , Camundongos , Sondas Moleculares/síntese química , Estrutura Molecular , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Adv Mater ; 31(19): e1808160, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30920702

RESUMO

Quantitatively mapping and monitoring the strain distribution in 2D materials is essential for their physical understanding and function engineering. Optical characterization methods are always appealing due to unique noninvasion and high-throughput advantages. However, all currently available optical spectroscopic techniques have application limitation, e.g., photoluminescence spectroscopy is for direct-bandgap semiconducting materials, Raman spectroscopy is for ones with Raman-active and strain-sensitive phonon modes, and second-harmonic generation spectroscopy is only for noncentrosymmetric ones. Here, a universal methodology to measure the full strain tensor in any 2D crystalline material by polarization-dependent third-harmonic generation is reported. This technique utilizes the third-order nonlinear optical response being a universal property in 2D crystals and the nonlinear susceptibility has a one-to-one correspondence to strain tensor via a photoelastic tensor. The photoelastic tensor of both a noncentrosymmetric D3h WS2 monolayer and a centrosymmetric D3d WS2 bilayer is successfully determined, and the strain tensor distribution in homogenously strained and randomly strained monolayer WS2 is further mapped. In addition, an atlas of photoelastic tensors to monitor the strain distribution in 2D materials belonging to all 32 crystallographic point groups is provided. This universal characterization on strain tensor should facilitate new functionality designs and accelerate device applications in 2D-materials-based electronic, optoelectronic, and photovoltaic devices.

17.
Adv Mater ; 31(18): e1900647, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908795

RESUMO

CsPbBr3 shows great potential in laser applications due to its superior optoelectronic characteristics. The growth of CsPbBr3 wire arrays with well-controlled sizes and locations is beneficial for cost-effective and largely scalable integration into on-chip devices. Besides, dynamic modulation of perovskite lasers is vital for practical applications. Here, monocrystalline CsPbBr3 microwire (MW) arrays with tunable widths, lengths, and locations are successfully synthesized. These MWs could serve as high-quality whispering-gallery-mode lasers with high quality factors (>1500), low thresholds (<3 µJ cm-2 ), and long stability (>2 h). An increase of the width results in an increase of the laser quality and the resonant mode number. The dynamic modulation of lasing modes is achieved by a piezoelectric polarization-induced refractive index change. Single-mode lasing can be obtained by applying strain to CsPbBr3 MWs with widths between 2.3 and 3.5 µm, and the mode positions can be modulated dynamically up to ≈9 nm by changing the applied strain. Piezoelectric-induced dynamic modulation of single-mode lasing is convenient and repeatable. This method opens new horizons in understanding and utilizing the piezoelectric properties of lead halide perovskites in lasing applications and shows potential in other applications, such as on-chip strain sensing.

18.
J Math Biol ; 78(7): 2259-2288, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30847501

RESUMO

Diapause, a period of arrested development caused by adverse environmental conditions, serves as a key survival mechanism for insects and other invertebrate organisms in temperate and subtropical areas. In this paper, a novel modelling framework, motivated by mosquito species, is proposed to investigate the effects of diapause on seasonal population growth, where the diapause period is taken as an independent growth process, during which the population dynamics are completely different from that in the normal developmental and post-diapause periods. More specifically, the annual growth period is divided into three intervals, and the population dynamics during each interval are described by different sets of equations. We formulate two models of delay differential equations (DDE) to explicitly describe mosquito population growth with a single diapausing stage, either immature or adult. These two models can be further unified into one DDE model, on which the well-posedness of the solutions and the global stability of the trivial and positive periodic solutions in terms of an index [Formula: see text] are analysed. The seasonal population abundances of two temperate mosquito species with different diapausing stages are simulated to identify the essential role on population persistence that diapause plays and predict that killing mosquitoes during the diapause period can lower but fail to prevent the occurrence of peak abundance in the following season. Instead, culling mosquitoes during the normal growth period is much more efficient to decrease the outbreak size. Our modelling framework may shed light on the diapause-induced variations in spatiotemporal distributions of different mosquito species.

19.
Appl Microbiol Biotechnol ; 103(9): 3829-3846, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30859256

RESUMO

Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0.0001) that controlled ion transport, amino acid transport and metabolism, soluble sugar accumulation, fatty acid ß-oxidation, saturated fatty acid synthesis, electron transfer, and oxidative stress tolerance. Additionally, the hypersalinized mycelia widely accumulated metabolites, including amino acids, soluble sugars, saturated fatty acids, and other carbon- and nitrogen-containing compounds. The addition of metabolites-such as neohesperidin, biuret, aspartic acid, alanine, proline, and ornithine-significantly promoted the growth (P ≤ 0.05) and the morphological adaptations of A. montevidensis ZYD4 grown in hypersaline environments. Our study demonstrated that morphological shifts, ion equilibrium, carbon and nitrogen metabolism for solute accumulation, and energy production are vital to halophilic fungi so that they can build tolerance to high-salinity environments.


Assuntos
Aspergillus/química , Aspergillus/genética , Cloreto de Sódio/metabolismo , Adaptação Fisiológica , Aspergillus/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cloreto de Sódio/análise , Transcrição Genética , Transcriptoma
20.
Adv Mater ; 31(17): e1806562, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30861234

RESUMO

To explore new constituents in two-dimensional (2D) materials and to combine their best in van der Waals heterostructures is in great demand as being a unique platform to discover new physical phenomena and to design novel functionalities in interface-based devices. Herein, PbI2 crystals as thin as a few layers are synthesized, particularly through a facile low-temperature solution approach with crystals of large size, regular shape, different thicknesses, and high yields. As a prototypical demonstration of band engineering of PbI2 -based interfacial semiconductors, PbI2 crystals are assembled with several transition metal dichalcogenide monolayers. The photoluminescence of MoS2 is enhanced in MoS2 /PbI2 stacks, while a dramatic photoluminescence quenching of WS2 and WSe2 is revealed in WS2 /PbI2 and WSe2 /PbI2 stacks. This is attributed to the effective heterojunction formation between PbI2 and these monolayers; type I band alignment in MoS2 /PbI2 stacks, where fast-transferred charge carriers accumulate in MoS2 with high emission efficiency, results in photoluminescence enhancement, and type II in WS2 /PbI2 and WSe2 /PbI2 stacks, with separated electrons and holes suitable for light harvesting, results in photoluminescence quenching. The results demonstrate that MoS2 , WS2 , and WSe2 monolayers with similar electronic structures show completely distinct light-matter interactions when interfacing with PbI2 , providing unprecedented capabilities to engineer the device performance of 2D heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA