Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.528
Filtrar
1.
Talanta ; 221: 121640, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076160

RESUMO

Simple, sensitive and rapid detection of circulating tumor cells (CTCs) is of great importance for early diagnosis and therapy of cancers. Overexpression of sugar units on cell surface is related to the phenotypes of many cancers. Based on the boronate ester interaction, we reported the electrochemical and colorimetric detection of CTCs with high simplicity and sensitivity. Specifically, ferroceneboronic acid (FcBA) can be measured by differential pulse voltammetry and 4-mercaptophenylboronic acid (MPBA) can induce the aggregation and color change of gold nanoparticles (AuNPs). CTCs captured by the aptamer-modified magnetic beads (Apt-MBs) can sequestrate FcBA or MPBA molecules by the formation of boronate ester bonds, thus leading to the decrease in the electrochemical signal of FcBA or preventing the MPBA-triggered aggregation of AuNPs. Due to the overexpression of sugar groups on the surface of CTCs, the amplification-free methods exhibited high sensitivity and obviated the use of additional antibody or aptamer for the recognition of captured cells. With MCF-7 cancer cell as the model, 50 cells can be readily determined by the electrochemical and colorimetric methods. The proposed strategy is valuable for probing of cell glycosylation and designing of novel sensing devices for detection of sugar-containing biological macromolecules and cells.

2.
J Biol Chem ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004438

RESUMO

Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown. Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.

3.
BMC Plant Biol ; 20(1): 463, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032526

RESUMO

BACKGROUND: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. RESULTS: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. CONCLUSIONS: Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.

4.
Nucleic Acids Res ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045751

RESUMO

Expression profiles of long non-coding RNAs (lncRNAs) across diverse biological conditions provide significant insights into their biological functions, interacting targets as well as transcriptional reliability. However, there lacks a comprehensive resource that systematically characterizes the expression landscape of human lncRNAs by integrating their expression profiles across a wide range of biological conditions. Here, we present LncExpDB (https://bigd.big.ac.cn/lncexpdb), an expression database of human lncRNAs that is devoted to providing comprehensive expression profiles of lncRNA genes, exploring their expression features and capacities, identifying featured genes with potentially important functions, and building interactions with protein-coding genes across various biological contexts/conditions. Based on comprehensive integration and stringent curation, LncExpDB currently houses expression profiles of 101 293 high-quality human lncRNA genes derived from 1977 samples of 337 biological conditions across nine biological contexts. Consequently, LncExpDB estimates lncRNA genes' expression reliability and capacities, identifies 25 191 featured genes, and further obtains 28 443 865 lncRNA-mRNA interactions. Moreover, user-friendly web interfaces enable interactive visualization of expression profiles across various conditions and easy exploration of featured lncRNAs and their interacting partners in specific contexts. Collectively, LncExpDB features comprehensive integration and curation of lncRNA expression profiles and thus will serve as a fundamental resource for functional studies on human lncRNAs.

5.
FASEB J ; 34(9): 12239-12254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33000527

RESUMO

α-Synuclein (α-syn)-induced neurotoxicity has been generally accepted as a key step in the pathogenesis of Parkinson's disease (PD). Microtubule-associated protein tau, which is considered second only to α-syn, has been repeatedly linked with PD in association studies. However, the underlying interaction between these two PD-related proteins in vivo remains unclear. To investigate how the expression of tau affects α-syn-induced neurodegeneration in vivo, we generated triple transgenic mice that overexpressed α-syn A53T mutation in the midbrain dopaminergic neurons (mDANs) with different expression levels of tau. Here, we found that tau had no significant effect on the A53T α-syn-mediated mDANs degeneration. However, tau knockout could modestly promote the formation of α-syn aggregates, accelerate the severe and progressive degeneration of parvalbumin-positive (PV+) neurons in substantia nigra pars reticulata (SNR), accompanied with anxiety-like behavior in aged PD-related α-syn A53T mice. The mechanisms may be associated with A53T α-syn-mediated specifically successive impairment of N-methyl-d-aspartate receptor subunit 2B (NR2B), postsynaptic density-95 (PSD-95) and microtubule-associated protein 1A (MAP1A) in PV+ neurons. Our study indicates that MAP1A may play a beneficial role in preserving the survival of PV+ neurons, and that inhibition of the impairment of NR2B/PSD-95/MAP1A pathway, may be a novel and preferential option to ameliorate α-syn-induced neurodegeneration.

6.
Lab Invest ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005011

RESUMO

Odd-skipped related 1 (Osr1) is a novel tumor suppressor gene in several cancer cell lines. Non-alcoholic steatohepatitis (NASH) is considered as a high-risk factor for hepatocellular carcinoma (HCC). This study is aimed to investigate the novel role of Osr1 in promoting the progression of hepatic steatosis to NASH. Following 12 weeks of diethylnitrosamine (DEN) and high-fat diet (HFD), wildtype (WT) and Osr1 heterozygous (Osr1+/-) male mice were examined for liver injuries. Osr1+/- mice displayed worsen liver injury with higher serum alanine aminotransferase levels than the WT mice. The Osr1+/- mice also revealed early signs of collagen deposition with increased hepatic Tgfb and Fn1 expression. There was overactivation of both JNK and NF-κB signaling in the Osr1+/- liver, along with accumulation of F4/80+ cells and enhanced hepatic expression of Il-1b and Il-6. Moreover, the Osr1+/- liver displayed hyperphosphorylation of AKT/mTOR signaling, associated with overexpression of Bcl-2. In addition, Osr1+/- and WT mice displayed differences in the DNA methylome of the liver cells. Specifically, Osr1-responsible CpG islands of Ccl3 and Pcgf2, genes for inflammation and macrophage infiltration, were further identified. Taken together, Osr1 plays an important role in regulating cell inflammation and survival through multiple signaling pathways and DNA methylation modification for NAFLD progression.

7.
Clin Interv Aging ; 15: 1883-1896, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061337

RESUMO

Purpose: The associations of high-density lipoprotein cholesterol (HDL-C) with mortality are still unclear. We explored the associations of HDL-C with all-cause and cause-specific mortality in an adult population. Methods: Deaths were classified into all-cause, cardiovascular, and cancer mortality. Survival curve, multivariate Cox regression, and subgroup analyses were conducted, and hazard ratio (HR) and 95% confidence interval (CI) were performed. We fitted Cox regression models for all-cause, cardiovascular, and cancer mortality to evaluate their associations with categories of HDL-C (≤30, 31-40, 41-50, 51-60 [reference], 61-70, >70 mg/dL). Results: A total of 42,145 (20,415 (48.44%) males, mean age 47.12±19.40 years) subjects were enrolled. At an average follow-up of 97.52±54.03 months, all-cause, cardiovascular, and cancer mortality numbers were 5,061 (12.01), 1,081 (2.56%), and 1,061 (2.52%), respectively. When compared with the reference group (HDL-C: 51-60 mg/dL), a U-shaped association was apparent for all-cause mortality, with elevated risk in participants with the lowest (≤30 mg/dL) (HR=1.33; 95% CI=1.14- 1.56) and highest (>70 mg/dL) (HR=1.14; 95% CI=1.02-1.27) HDL-C concentration. Associations for cardiovascular and cancer mortality were non-linear. An elevated risk for cancer mortality was observed in those with the highest HDL-C concentration (HR=1.06; 95% CI-0.84-1.34) compared with the reference group, although it was not statistically significant. The effect of HDL-C on mortality was adjusted by some traditional risk factors including age, gender, race, or comorbidities. Conclusion: A U-shaped association was observed between HDL-C and all-cause mortality among an adult population.

8.
Clin Nutr ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33077274

RESUMO

OBJECTIVE: To evaluate the nutritional risk and therapy in severe and critical patients with COVID-19. METHODS: A total of 523 patients enrolled from four hospitals in Wuhan, China. The inclusion time was from January 2, 2020 to February 15. Clinical characteristics and laboratory values were obtained from electronic medical records, nursing records, and related examinations. RESULTS: Of these patients, 211 (40.3%) were admitted to the ICU and 115 deaths (22.0%). Patients admitted to the ICU had lower BMI and plasma protein levels. The median Nutrition risk in critically ill (NUTRIC) score of 211 patients in the ICU was 5 (4, 6) and Nutritional Risk Screening (NRS) score was 5 (3, 6). The ratio of parenteral nutrition (PN) therapy in non-survivors was greater than that in survivors, and the time to start nutrition therapy was later than that in survivors. The NUTRIC score can independently predict the risk of death in the hospital (OR = 1.197, 95%CI: 1.091-1.445, p = 0.006) and high NRS score patients have a higher risk of poor outcome in the ICU (OR = 1.880, 95%CI: 1.151-3.070, p = 0.012). After adjusted age and sex, for each standard deviation increase in BMI, the risk of in-hospital death was reduced by 13% (HR = 0.871, 95%CI: 0.795-0.955, p = 0.003), and the risk of ICU transfer was reduced by 7% (HR = 0.932, 95%CI:0.885-0.981, p = 0.007). The in-hospital survival time of patients with albumin level ≤35 g/L was significantly decreased (15.9 d, 95% CI: 13.7-16.3, vs 24.2 d, 95% CI: 22.3-29.7, p < 0.001). CONCLUSION: Severe and critical patients with COVID-19 have a high risk of malnutrition. Low BMI and protein levels were significantly associated with adverse events. Early nutritional risk screening and therapy for patients with COVID-19 are necessary.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33099642

RESUMO

OBJECTIVE: To evaluate the association and dose-response pattern between antimalarial drugs and overall and cause specific mortality in SLE patients. METHODS: Medical records including information on HCQ/chloroquine (CQ) prescription were extracted from Jiangsu Lupus database. The database was designed to collect data from SLE patients that first-hospitalized during 1999-2009 in Jiangsu province, China, and a follow-up for survival status was performed in 2010 and 2015. Cox and restricted cubic spline models were used to estimate the hazard ratio and 95% CI. RESULTS: We identified 221 deaths among 2446 SLE patients in total. Compared with non-users, decreased overall mortality was associated with either HCQ or CQ users, with adjusted hazard ratio (95% CI) of 0.49 (0.35, 0.67) and 0.49 (0.27, 0.87), respectively. The association between HCQ/CQ and overall mortality was similar across subgroups, such as patients with comorbidities and organ involvements. Interestingly, both the time and the daily dosage of HCQ/CQ use were related to decreased mortality of SLE in a linear dose-response relationship. In cause specific analyses, HCQ/CQ was inversely associated with death from renal insufficiency and other organ (cardiopulmonary, gastrointestinal and haematological) involvements, with adjusted hazard ratio (95% CI) of 0.23 (0.09, 0.55) and 0.25 (0.10, 0.62), respectively, yet it was not significantly associated with mortality from infection and neuropsychiatric involvements. CONCLUSION: Antimalarial drugs were associated with lower risk of SLE mortality, especially renal insufficiency- and other organ involvement-related death. The protective effects for survival might be augmented by adherence and full dosage of these drugs.

10.
Cell Microbiol ; : e13281, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33099847

RESUMO

Due to the frequent mutations, influenza A virus (IAV) becomes resistant to anti-viral drugs targeting influenza viral proteins. There are increasing interests in anti-viral agents that target host cellular proteins required for virus replication. Tankyrase (TNKS) has poly (ADP-ribose) polymerase activity and is a negative regulator of many host proteins. The objectives of this study are to study the role of TNKS2 in IAV infection, identify the microRNAs targeting TNKS2, and to understand the mechanisms involved. We found that TNKS2 expression was elevated in human lung epithelial cells and mouse lungs during IAV infection. Knock-down of TNKS2 by RNA interference reduced viral replication. Using a computation approach and 3'-untranslation regions (3'-UTR) reporter assay, we identified miR-206 as the microRNA that targeted TNKS2. Overexpression of miR-206 reduced viral protein levels and virus production in cell culture. The effect of miR-206 on IAV replication was strain-independent. miR-206 activated JNK/c-Jun signaling, induced type I interferon expression and enhanced Stat signaling. Finally, the delivery of an adenovirus expressing miR-206 into the lung of mice challenged with IAV increased type I interferon response, suppressed viral load in the lungs and increased survival. Our results indicate that miR-206 has anti-influenza activity by targeting TNKS2 and subsequently activating the anti-viral state. This article is protected by copyright. All rights reserved.

11.
J Cell Mol Med ; 2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33098376

RESUMO

Congenital heart disease (CHD) associated with polydactyly involves various genes. We aimed to identify variations from genes related to complex CHD with polydactyly and to investigate the cellular functions related to the mutations. Blood was collected from a complex CHD case with polydactyly, and whole exome sequencing (WES) was performed. The CRISPR/Cas9 system was used to generate human pluripotent stem cell with mutations (hPSCs-Mut) that were differentiated into cardiomyocytes (hPSC-CMs-Mut) and analysed by transcriptomics on day 0, 9 and 13. Two heterozygous mutations, LTBP2 (c.2206G>A, p.Asp736Asn, RefSeq NM_000428.2) and TCTN3 (c.1268G>A, p.Gly423Glu, RefSeq NM_015631.5), were identified via WES but no TBX5 mutations were found. The stable cell lines of hPSCs-LTBP2mu /TCTN3mu were constructed and differentiated into hPSC-CMs-LTBP2mu /TCTN3mu . Compared to the wild type, LTBP2 mutation delayed the development of CMs. The TCTN3 mutation consistently presented lower rate and weaker force of the contraction of CMs. For gene expression pattern of persistent up-regulation, pathways in cardiac development and congenital heart disease were enriched in hPSCs-CM-LTBP2mu , compared with hPSCs-CM-WT. Thus, the heterozygous mutations in TCTN3 and LTBP2 affect contractility (rate and force) of cardiac myocytes and may affect the development of the heart. These findings provide new insights into the pathogenesis of complex CHD with polydactyly.

12.
BMC Infect Dis ; 20(1): 787, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092539

RESUMO

BACKGROUND: A cluster of acute respiratory illness, now known as Corona Virus Disease 2019 (COVID-19) caused by 2019 novel coronavirus (SARS-CoV-2), has become a global pandemic. Aged population with cardiovascular diseases are more likely be to infected with SARS-CoV-2 and result in more severe outcomes and elevated case-fatality rate. Meanwhile, cardiovascular diseases have a high prevalence in the middle-aged and elderly population. However, despite of several researches in COVID-19, cardiovascular implications related to it still remains largely unclear. Therefore, a specific analysis in regard to cardiovascular implications of COVID-19 patients is in great need. METHODS: In this single-centered, retrospective, observational study, 116 patients with laboratory-confirmed COVID-19 were enrolled, who admitted to the General Hospital of Central Theater Command (Wuhan, China) from January 20 to March 8, 2020. The demographic data, underlying comorbidities, clinical symptoms and signs, laboratory findings, chest computed tomography, treatment measures, and outcome data were collected from electronic medical records. Data were compared between non-severe and severe cases. RESULTS: Of 116 hospitalized patients with COVID-19, the median age was 58.5 years (IQR, 47.0-69.0), and 36 (31.0%) were female. Hypertension (45 [38.8%]), diabetes (19 [16.4%]), and coronary heart disease (17 [14.7%]) were the most common coexisting conditions. Common symptoms included fever [99 (85.3%)], dry cough (61 [52.6%]), fatigue (60 [51.7%]), dyspnea (52 [44.8%]), anorexia (50 [43.1%]), and chest discomfort (50 [43.1%]). Local and/or bilateral patchy shadowing were the typical radiological findings on chest computed tomography. Lymphopenia (lymphocyte count, 1.0 × 109/L [IQR, 0.7-1.3]) was observed in 66 patients (56.9%), and elevated lactate dehydrogenase (245.5 U/L [IQR, 194.3-319.8]) in 69 patients (59.5%). Hypokalemia occurred in 24 (20.7%) patients. Compared with non-severe cases, severe cases were older (64.0 years [IQR, 53.0-76.0] vs 56.0 years [IQR, 37.0-64.0]), more likely to have comorbidities (35 [63.6%] vs 24 [39.3%]), and more likely to develop acute cardiac injury (19 [34.5%] vs 4 [6.6%]), acute heart failure (18 [32.7%] vs 3 [4.9%]), and ARDS (20 [36.4%] vs 0 [0%]). During hospitalization, the prevalence of new onset hypertension was significantly higher in severe patients (55.2% vs 19.0%) than in non-severe ones. CONCLUSIONS: In this single-centered, retrospective, observational study, we found that the infection of SARS-CoV-2 was more likely to occur in middle and aged population with cardiovascular comorbidities. Cardiovascular complications, including new onset hypertension and heart injury were common in severe patients with COVID-19. More detailed researches in cardiovascular involvement in COVID-19 are urgently needed to further understand the disease.

13.
Biomed Res Int ; 2020: 9786428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102601

RESUMO

Background: Colorectal cancer (CRC) is an underlying deadly malignancy with poor prognosis, lacking effective therapies currently available to improve the prognosis. C18H17NO6 (AUCAN), a kind of dibenzofuran extracted from a special plant in Yunnan Province (China), is identified as a natural anticancer agent exerting strong inhibitory activities on various cancers. Our study was committed to investigating the potency of AUCAN against colorectal cancers and further exploring the potential mechanisms via proteomic analysis. Methods: Cell Counting Kit-8 assay and immunofluorescence staining were used to investigate the effect of AUCAN on the viability and proliferation of HCT-116 cells and RKO cells. The apoptosis of HCT-116 and RKO cells after AUCAN administration was determined by the flow cytometry test. The effects of AUCAN on invasion and migration of tumor cells were investigated by the colony formation assay, wound healing test, and Transwell invasion test. Meanwhile, the energy metabolism and growth of tumor tissues after AUCAN administration with 10 mg/kg and 20 mg/kg were examined by PET-CT in vivo. The side effects of AUCAN treatment were also evaluated through blood routine and liver function examination. RKO cell proliferation and apoptosis in vivo were further determined by hematoxylin and eosin staining, TUNEL staining, and immunohistochemistry. Furthermore, the differentially expressed proteins (DEPs) involved in AUCAN treatment were determined by proteomic analysis followed by functional clustering analysis. Results: The results showed that AUCAN suppressed the migratory abilities and enhanced apoptosis of HCT-116 and RKO cell lines. Meanwhile, AUCAN treatment dramatically depressed the growth and volume of colorectal tumors in nude mice and suppressed the survival of RKO cells in tumor tissues without any side effects on the blood routine and liver function. In addition, twenty-four upregulated and forty-two downregulated proteins were identified. Additionally, functional clustering analysis concealed enriched biological processes, cellular components, molecular functions, and related pathways of these proteins involved in cellular metabolic. Finally, the protein-protein interaction analysis revealed the regulatory connection among these DEPs. Conclusions: Taken together, AUCAN exerted its significant antitumor effect without side effects in the blood routine and liver function and the underlying mechanisms were preliminarily investigated by proteomic analysis.

14.
Bioinformatics ; 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33070184

RESUMO

MOTIVATION: microRNAs (miRNAs) are important gene regulators and they are involved in many biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA interactions is a crucial task. To this end, a huge number of computational methods has been developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological process. The recent development of single cell data and the booming of the exploration of cell trajectories using "pseudo-time" concept have inspired us to develop a pseudo-time based method to infer the miRNA-mRNA relationships characterising a biological process by taking into account the temporal aspect of the process. RESULTS: We have developed a novel approach, called pseudo-time causality (PTC), to find the causal relationships between miRNAs and mRNAs during a biological process. We have applied the proposed method to both single cell and bulk sequencing datasets for Epithelia to Mesenchymal Transition (EMT), a key process in cancer metastasis. The evaluation results show that our method significantly outperforms existing methods in finding miRNA-mRNA interactions in both single cell and bulk data. The results suggest that utilising the pseudo-temporal information from the data helps reveal the gene regulation in a biological process much better than using the static information. AVAILABILITY: R scripts and datasets can be found at https://github.com/AndresMCB/PTC. CONTACT: thuc.le@unisa.edu.au. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 41-44, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33040811

RESUMO

The current experiment was carried out to observe and analyze the effects of three orthodontic appliances combined with minocycline on periodontitis and inflammatory factors of gingival crevicular fluid. the patients included in this study were 180 patients with dental crowding treated in our hospital. They were divided into three groups, namely the invisible orthodontic appliance group (n=60), self-ligation orthodontic appliance group (n=60), traditional ligation bracket group (n=60), all of which were applied with minocycline therapy. The therapeutic effects of the three groups were observed. after three months of treatment, the periodontal index of each group showed an upward trend (p<0.05). At six months to one year, the periodontal index of the self-ligation orthodontic appliance group and conventional ligation bracket group was higher than that of the invisible orthodontic appliance group, p<0.05. After treatment, the expression of IL-1ß and TNF-α increased for the three groups, p<0.05; the self-ligation orthodontic appliance group and the traditional ligation bracket group were the same as the invisible orthodontic appliance group in at 24 months, p>0.05. in the early stage of orthodontic treatment, the invisible orthodontic appliance can keep the oral cavity in a clean and hygienic state. However, after 18 months of orthodontic treatment, all three orthodontic treatments did not have a significant impact on oral hygiene.

16.
Pediatr Infect Dis J ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33044433

RESUMO

BACKGROUND: There are limit studies about pediatric brain abscess in China. The aim of this study was to analyze clinical characteristics and outcomes of pediatric brain abscess in recent years in China. METHODS: The clinical information of children with brain abscess hospitalized in Beijing Children's Hospital between January 1, 2007 and December 31, 2016 were retrospectively reviewed. RESULTS: Ninety-four children were enrolled in this study. A Streptococcus milleri group (13.8%) was identified as the most common causative organisms, followed by Staphylococcus aureus (6.4%). The overall mortality was 21.6%, with 50.0% of deaths happening in the first week after diagnosis. Long-term outcomes of 74 patients were assessed with Glasgow Outcome Scale-Extended Pediatric Reversion: 50 patients with a score of 1-2 (favorable outcome) and 24 patients with a score of 3-8 (unfavorable outcome). Patients with multiple abscesses (P = 0.029) and intraventricular rupture of brain abscess/hydrocephalus (P = 0.024) had higher risk of unfavorable outcomes. CONCLUSIONS: Brain abscess is a serious disease with high mortality in children; more aggressive treatments should be considered in the first week of diagnosis because of high risk of death, and for patients with multiple brain abscesses and intraventricular rupture of brain abscess/hydrocephalus because of their higher risk of unfavorable.

17.
Chemosphere ; 264(Pt 1): 128456, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039917

RESUMO

The degradation of nitrobenzene and its intermediate aniline from wastewater by constructed wetlands coupled with the micro-electric field (CW-MEF) technology was studied. The results showed that the CW-MEF system had good degradation. With the increase of influent concentration of nitrobenzene, the removal rate of the anode was excellent which remained above 86%, but the degradation of CW-MEF for COD decreased. In different stages, the power generation capacity was different. In the second stage, the power generation voltage reached 430 V and the average power density was 85.07 MW m-3, while the maximum reached 87.47 MW m-3. Through high-throughput sequencing analysis, the A1 sludge layer contained 36% of thick-walled bacteria and 20% of bacteroides, the A2 contained about 20% of campylobacter green, and the A3 contained 10% of green campylobacter, pachyphyte and bacteroides.

18.
J Clin Lab Anal ; : e23597, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33080073

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is a heterogeneous clonal disease originated from hematopoietic stem cells. Epigenetic studies had demonstrated that DNA methylation and histone acetylation were abnormal in MDS. Azacitidine is an effective drug in the treatment of demethylation. METHODS: RT-PCR was performed to determine GADD45γ in 15 MDS clinical samples. Myelodysplastic syndrome cell lines SKM-1 and HS-5 were transfected with GADD45γ eukaryotic expression vector and/or GADD45γ shRNA interference plasmid, and treated with azacitidine. Proliferation and apoptosis were examined by CCK-8 and Western blot analysis to confirm the function role of GADD45γ and azacitidine. The methylation level of GADD45γ gene was detected by bisulfite conversion and PCR. RESULTS: This study found that GADD45γ gene was down-expressed in MDS patients' bone marrow and MDS cell lines, and the down-regulation of GADD45γ in MDS could inhibit MDS cell apoptosis and promote proliferation. Azacitidine, a demethylation drug, could restore the expression of GADD45γ in MDS cells and inhibit the proliferation of MDS cells by inducing apoptosis, which was related to prognosis and transformation. CONCLUSION: This study indicated that GADD45γ was expected to become a new target of MDS-targeted therapy. The findings of this study provided a new direction for the research and development of new MDS clinical drugs, and gave a new idea for the development of MDS demethylation drug to realize precise treatment.

19.
Cell Signal ; : 109813, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080316

RESUMO

Mas-related G protein-coupled receptor D (MrgprD) is mainly expressed in small-diameter sensory neurons of the dorsal root ganglion (DRG). Results from previous studies suggest that MrgprD participates in mechanical hyperalgesia and nerve injury-induced neuropathic pain. However, it remains elusive whether and how MrgprD is involved in inflammatory pain. Here, we used a mouse model of chronic inflammatory pain established by intraperitoneal administration of lipopolysaccharide (LPS). The LPS injection induced an evident peripheral neuroinflammation and mechanical hyperalgesia in the mice and increased MrgprD expression in the DRG. The LPS administration also augmented the proportion of MrgprD-expressing neurons in the lumbar 4 DRG. Behaviorally, the LPS-induced hypersensitivities to mechanical and cold stimuli, but not to a heat stimulus, were substantially attenuated in Mrgprd-knockout mice compared with wildtype littermates. Mrgprd deletion in DRGs suppressed the LPS-triggered activation of the NF-κB signaling pathway and attenuated LPS-induced up-regulation of pro-inflammatory factors. Moreover, ectopic overexpression of MrgprD in HEK293 cells stably expressing mouse toll-like receptor 4 (TLR4) markedly promoted the LPS-induced NF-κB activation and enhanced NF-κB's DNA-binding activity. Furthermore, MrgprD physically interacted with TGF-ß-activated kinase 1 (TAK1) and I-kappa-B-kinase (IKK) complexes, but not with mitogen-activated protein kinases (MAPKs) in mouse DRGs. In macrophage-like RAW 264.7 cells, MrgprD also interacted with TAK1 and IKK complex, and the treatment of MrgprD agonist elicited the activation of NF-κB signaling, but not of mitogen-activated protein kinases (MAPKs) signaling pathway. Our findings indicate that MrgprD facilitates the development of LPS-triggered persistent inflammatory hyperalgesia by promoting canonical NF-κB activation, highlighting the important roles of MrgprD in NF-κB-mediated inflammation and chronic pain.

20.
Animals (Basel) ; 10(10)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081100

RESUMO

miRNA is a small non-coding RNA, which plays an important role in diverse biological processes. In the present study, we explore the effect of ssc-miR-451 on porcine adipose development and meat quality. We observed that ssc-miR-451 was downregulated during porcine primary adipocyte differentiation. Overexpression of ssc-miR-451 inhibited adipogenic differentiation, while inhibition of ssc-miR-451 promoted adipogenic differentiation. The dual luciferase reporter system indicated Acetyl-CoA carboxylase alpha (ACACA) as a target gene of ssc-miR-451. Correlation analysis negatively correlated miR-451 expression with intramuscular fat content (IMF) and positively correlated ACACA expression with IMF. Further analysis of fatty acid composition revealed that pigs with high expression of ssc-miR-451 had higher monounsaturated fatty acid (MUFA) and lower polyunsaturated fatty acid (PUFA). Taken together, our study suggests that ssc-miR-451 regulates lipid deposition and fatty acid composition by targeting ACACA, and ssc-miR-451 may serve as a potential genetic marker to improve pork quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA