Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 731
Filtrar
1.
Metab Eng ; 70: 55-66, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35033656

RESUMO

Chitooligosaccharides (COSs) have a widespread range of biological functions and an incredible potential for various pharmaceutical and agricultural applications. Although several physical, chemical, and biological techniques have been reported for COSs production, it is still a challenge to obtain structurally defined COSs with defined polymerization (DP) and acetylation patterns, which hampers the specific characterization and application of COSs. Herein, we achieved the de novo production of structurally defined COSs using combinatorial pathway engineering in Bacillus subtilis. Specifically, the COSs synthase NodC from Azorhizobium caulinodans was overexpressed in B. subtilis, leading to 30 ± 0.86 mg/L of chitin oligosaccharides (CTOSs), the homo-oligomers of N-acetylglucosamine (GlcNAc) with a well-defined DP lower than 6. Then introduction of a GlcNAc synthesis module to promote the supply of the sugar acceptor GlcNAc, reduced CTOSs production, which suggested that the activity of COSs synthase NodC and the supply of sugar donor UDP-GlcNAc may be the limiting steps for CTOSs synthesis. Therefore, 6 exogenous COSs synthase candidates were examined, and the nodCM from Mesorhizobium loti yielded the highest CTOSs titer of 560 ± 16 mg/L. Finally, both the de novo pathway and the salvage pathway of UDP-GlcNAc were engineered to further promote the biosynthesis of CTOSs. The titer of CTOSs in 3-L fed-batch bioreactor reached 4.82 ± 0.11 g/L (85.6% CTOS5, 7.5% CTOS4, 5.3% CTOS3 and 1.6% CTOS2), which was the highest ever reported. This is the first report proving the feasibility of the de novo production of structurally defined CTOSs by synthetic biology, and provides a good starting point for further engineering to achieve the commercial production.

3.
Biotechnol J ; : e2100655, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072976

RESUMO

N-terminal coding sequences (NCSs) are key regulatory elements for fine-tuning gene expression during translation initiation-the rate-limiting step of translation. However, owing to the complex combinatory effects of NCS biophysical factors and endogenous regulation, designing NCSs remains challenging. In this study, we implemented a multi-view learning strategy for model-driven generation of synthetic NCSs for Saccharomyces cerevisiae and Bacillus subtilis, which are widely used in laboratories and industries. NCS libraries for S. cerevisiae and B. subtilis with nearly 150,000 cells were sorted. Next, model training was performed with NCS deep features extracted from DNA, codon, and amino acid sequences, as well as calculated features from the minimum free energy and tRNA adaption index. Two models were separately developed for generating synthetic NCSs for both up- and down-regulating gene expression with accuracies higher than 65% for S. cerevisiae and B. subtilis. Synthetic NCSs were then applied to enhance bioproduction, yielding 1.48- and 1.71-fold production improvements of D-limonene by S. cerevisiae and ovalbumin by B. subtilis, respectively. This work provides model-driven design of synthetic NCSs as a toolbox for regulating gene expression in S. cerevisiae and B. subtilis. The machine learning-based modeling approach can be used for NCS design in other microorganisms. This article is protected by copyright. All rights reserved.

4.
J Biotechnol ; 343: 128-137, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34906603

RESUMO

Methanol is a promising green feedstock for producing fuels and chemicals because it is inexpensive, clean, environmentally friendly, and easily prepared. Thus, many studies have been devoted to engineering non-native methylotrophic platform microorganisms to utilize methanol. This study adopted a series of strategies to develop a synthetic methylotrophic Bacillus subtilis that can use methanol as the carbon source, including the heterologous expression of methanol dehydrogenase (Mdh), enhancement of the expressions of 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi), regulation of the expressions of key enzymes at both the translational and transcriptional levels, stabilization of the key enzyme expression through a dual-system for expressing the target genes on both the plasmid and genome, and improvement of the catalytic activity of Mdh with a recycling strategy for NAD+. As a result, the methanol consumption of the synthetic methylotrophic B. subtilis reached 4.09 g/L, with the maximum OD600 showing a 2.21-fold increase compared with the wild-type B. subtilis, which cannot use methanol. We further deleted the phosphoglucose isomerase (Pgi) and added co-substrates to increase the supply of ribulose-5-phosphate (Ru-5-P), and the specific methanol consumption rate increased by an additional 27.54%. Finally, we successfully constructed two strains that cannot grow in M9 medium with xylose or ribose unless methanol is utilized. The strategies used in this study are generally applicable to other studies on synthetic methylotrophy.


Assuntos
Bacillus , Metanol , Bacillus/genética , Bacillus subtilis/genética , Engenharia Metabólica , Plasmídeos
5.
J Hazard Mater ; 424(Pt B): 127441, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673396

RESUMO

The natural ecosystem will continually deteriorate for decades by the leakage of Cs and Sr isotopes. The exploration of the new materials or techniques for the efficient treatment of radioactive wastewater is critically important. In this study, a dielectric barrier discharge (DBD) configuration was constructed to operate the non-thermal plasma (NTP). The NTP was incorporated into the synthesis of polyaluminum chloride (PAC) in two different procedures to intensify the synthesis of PAC (NTP-PAC) and enhance the further removal of Cs and Sr from wastewater. The employment of NTP in two procedures both had significantly changed the physicochemical characteristics of PAC materials, which facilitated the further adsorption application of NTP-PAC on the treatment of Cs+ and Sr2+. Different molecular, morphological, and adsorption characteristics were confirmed to the NTP-PAC materials. The heterogeneous adsorption of the NTP-PAC can be appropriately fitted by both the pseudo-first-order kinetic model and the Elovich model. Both physisorption and chemisorption reaction mechanisms were ensured for the heterogeneous adsorption of the NTP-PAC material towards Cs+ and Sr2+, which guaranteed the excellent adsorption performance of NTP-PAC materials compared to PAC. The electron collisions caused by NTP with alum pulp created highly reactive growth precursors and intensified the nucleation and hydrolysis polymerization of PAC. The employment of NTP explicitly broadens the reaction pathways between PAC and cationic contaminants in the aqueous environment, which expands the application area of PAC materials in environmental sustainability.

6.
J Agric Food Chem ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851104

RESUMO

N-Acetylneuraminic acid (NeuAc) is widely used as a supplement to promote brain health and enhance immunity. However, the low efficiency of de novo NeuAc synthesis limits its cost-efficient bioproduction. Herein, a synthetic multiplexed pathway engineering (SMPE) strategy is proposed to improve NeuAc synthesis. First, we compare the key enzyme sources and optimize the expression levels of three NeuAc synthesis pathways in Bacillus subtilis; the AGE, NeuC, and NanE pathways, for which NeuAc production reached 3.94, 5.67, and 0.19 g/L, respectively. Next, these synthesis pathways were combined and modularly optimized via the SMPE strategy, with production reaching 7.87 g/L. Finally, fed-batch fermentation in a 5 L fermenter reached 30.10 g/L NeuAc production, the highest reported production using glucose as the sole carbon source. Using a generally regarded as safe strain as a production host, the developed NeuAc-producing approach should be favorable for efficient bioproduction, without the need for plasmids, antibiotics, or chemical inducers.

7.
ACS Synth Biol ; 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855356

RESUMO

Corynebacterium glutamicum is an important workhorse in industrial white biotechnology. It has been widely applied in the producing processes of amino acids, fuels, and diverse value-added chemicals. With the continuous disclosure of genetic regulation mechanisms, various strategies and technologies of synthetic biology were used to design and construct C. glutamicum cells for biomanufacturing and bioremediation. This study mainly aimed to summarize the design and construction strategies of C. glutamicum-engineered strains, which were based on genomic modification, synthetic biological device-assisted metabolic flux optimization, and directed evolution-based engineering. Then, taking two important bioproducts (N-acetylglucosamine and hyaluronic acid) as examples, the applications of C. glutamicum cell factories were introduced. Finally, we discussed the current challenges and future development trends of C. glutamicum-engineered strain construction.

8.
Beilstein J Org Chem ; 17: 2924-2931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956412

RESUMO

Hoshinoamides A, B and C, linear lipopeptides, were isolated from the marine cyanobacterium Caldora penicillata, with potent antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum. Herein, we describe the first total synthesis of hoshinoamide A by the combination of liquid-phase and solid-phase peptide synthesis. Liquid-phase synthesis is to improve the coupling yield of ʟ-Val3 and N-Me-ᴅ-Phe2. Connecting other amino acids efficiency and convergence is achieved by solid-state synthesis. Our synthetic strategy could synthesize the target peptide in high yield with good purity.

9.
Anim Sci J ; 92(1): e13672, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904771

RESUMO

Goose fatty liver is a specific type of nonalcoholic fatty liver that is protected from harmful effects associated with severe steatosis. Our previous findings suggest that suppression of the complement C5 may be relevant, but the mechanism is unclear. Therefore, in this study, we first verified the expression pattern of complement genes (including C5) during goose fatty liver formation and then determined the liver fat content and fatty acid composition by high-performance liquid chromatography (HPLC), followed by selecting the differential metabolites to treat HepG2, goose and mouse primary hepatocytes, aiming to explore the mechanism of C5 and inflammation suppression in goose fatty liver. The data confirmed the suppression of complement genes (including C5) in goose fatty livers. Moreover, fat content was significantly higher in fatty liver versus normal ones, with oleic acid and palmitic acid dominantly accounting for the difference. In line with this, high concentration of palmitate led to down regulation of C5 expression in goose primary hepatocytes whereas upregulation in mouse primary hepatocytes and HepG2 cells. In conclusion, regulation on C5 expression by fatty liver related factors including high level of palmitic acid may contribute to the protection of goose liver from severe hepatic steatosis.

10.
Front Mol Biosci ; 8: 766609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970594

RESUMO

Introduction: Fibrosis, a primary cause of hepatocellular carcinoma (HCC), is intimately associated with inflammation, the tumor microenvironment (TME), and multiple carcinogenic pathways. Currently, due to widespread inter- and intra-tumoral heterogeneity of HCC, the efficacy of immunotherapy is limited. Seeking a stable and novel tool to predict prognosis and immunotherapy response is imperative. Methods: Using stepwise Cox regression, least absolute shrinkage and selection operator (LASSO), and random survival forest algorithms, the fibrosis-associated signature (FAIS) was developed and further validated. Subsequently, comprehensive exploration was conducted to identify distinct genomic alterations, clinical features, biological functions, and immune landscapes of HCC patients. Results: The FAIS was an independent prognostic predictor of overall survival and recurrence-free survival in HCC. In parallel, the FAIS exhibited stable and accurate performance at predicting prognosis based on the evaluation of Kaplan-Meier survival curves, receiver operator characteristic curves, decision curve analysis, and Harrell's C-index. Further investigation elucidated that the high-risk group presented an inferior prognosis with advanced clinical traits and a high mutation frequency of TP53, whereas the low-risk group was characterized by superior CD8+ T cell infiltration, a higher TIS score, and a lower TIDE score. Additionally, patients in the low-risk group might yield more benefits from immunotherapy. Conclusion: The FAIS was an excellent scoring system that could stratify HCC patients and might serve as a promising tool to guide surveillance, improve prognosis, and facilitate clinical management.

11.
ACS Appl Mater Interfaces ; 13(51): 61742-61750, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34905352

RESUMO

Using a heavy-metal (HM) alloy layer in spin-orbit torque (SOT)-based devices is an effective method for obtaining a high current-spin conversion efficiency θSH. In this work, SOT-based spintronic devices with a Pt100-xRux-alloyed HM layer are studied by applying harmonic Hall measurements and magneto-optical Kerr effect microscopy to detect the θSH and to observe the process of current-induced magnetization switching. Both the highest θSH of 0.132 and the lowest critical current density (Jc) of 8 × 105 A/cm2 are realized in a device with x = 20, which satisfies the high SOT efficiency and low energy consumption simultaneously. The interfacial Dzyaloshinskii-Moriya interaction can be overcome by increasing the in-plane assist field. Meanwhile, the minimum in-plane field required for current-induced complete switching can be reduced to ±60 Oe. Our study reveals that using the Pt-Ru alloyed HM layer is an effective route for SOT application with enhanced performance.

13.
Anim Sci J ; 92(1): e13674, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34935255

RESUMO

Glucose oversupply promotes formation of fatty liver, and fatty liver is usually accompanied with hyperglycemia. However, the mechanism by which glucose promotes formation of fatty liver is not very clear. In this study, fatty liver was successfully induced in Landes goose by 19 days of overfeeding with corn-based feed, the overfed geese had a significantly higher level of blood glucose than the normally fed geese (control group). In goose primary liver cells, high level of glucose promoted fat deposition and induced the expression of SREBF2(or SREBP2), a key regulator of lipid metabolism, and its intronic gene, miR-33. Moreover, overexpression of miRNA-33(miR-33) promotes lipid accumulation in goose primary liver cells. Consistently, miR-33 inhibitor suppressed glucose induced lipid accumulation in liver cells. Interestingly, the relative abundance of miR-33 in goose fatty liver was significantly higher than that in normal liver, while the relative mRNA and protein abundances of CROT, the target gene of miR-33, in goose fatty liver were significantly lower than those in goose normal liver. Taken together, these findings suggest that miR-33 mediates glucose promotion of lipid accumulation in goose primary liver cells, and that glucose participates in formation of goose fatty liver by regulating the expression of miR-33/CROT.

14.
J Poult Sci ; 58(4): 245-257, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34899020

RESUMO

Nutrition and energy are essential for poultry growth and production performance. Fasting and refeeding have been widely used to study the effects of nutrition, energy, and related mechanisms in chicken. Previous studies have shown that geese have a strong capacity for fat synthesis and storage; thus, changes in the goose liver transcriptome may be different from those in chicken assessed with a model of fasting and refeeding. However, the responses of the goose liver transcriptome to fasting and refeeding have not yet been addressed. In this study, 36 70-day-old Si Ji geese with similar body weight were randomly assigned to three groups: control (ad libitum feeding), fasting (fasted for 24 h), and refeeding (fast for 24 h followed by 2-h feeding) groups. After treatment, eight geese per group were sacrificed for sample collection. Liver samples from four geese in each group were subjected to transcriptome analysis, followed by validation of differentially expressed genes (DEGs) using quantitative polymerase chain reaction with the remaining samples. As a result, 155 DEGs (73 up-regulated) were identified between the control and fasting groups, and 651 DEGs (321 up-regulated) were identified between the fasting and refeeding groups. The enrichment analyses of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed that fasting mainly influenced material metabolism in the liver, especially lipid metabolism; in contrast, refeeding affected not only lipid metabolism but also glucose and amino acid metabolism. In addition, the peroxisome proliferator-activated receptor (PPAR) signaling pathway may play an important role in lipid metabolism. In conclusion, fasting and refeeding have a strong effect on lipid metabolism in the goose liver; specifically, fasting promotes fatty acid oxidation and inhibits fatty acid synthesis, and refeeding has the opposite effect. The model of fasting and refeeding is suitable for goose nutrition studies.

15.
J Poult Sci ; 58(4): 263-269, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34899022

RESUMO

Communication between tissues and organs plays an important role in the maintenance of normal physiological functions as well as the occurrence and development of diseases. Communication molecules act as a bridge for interactions between tissues and organs, playing not only a local role in the tissues and organs where they are secreted but also in exerting systemic effects on the whole body via circulation. In this study, blood microRNA-omics analysis of overfed vs. normally fed (control) Landes geese revealed that the content of each of the 21 microRNAs (miRNAs) in the blood of overfed geese was significantly higher than that in the blood of control geese. These miRNAs may have systematic effects in the development of goose fatty liver as well as being candidate markers for the diagnosis of goose fatty liver. We determined the expression of miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p using quantitative PCR in goose fatty liver vs. that in normal liver. The expression of these miRNAs, except miR-129-5p, in goose fatty liver was also significantly higher than that in normal liver (P<0.05), suggesting that these blood miRNAs are released from goose fatty liver. In addition, we found that expression of IGFBP5, the predicted target gene of miR-143, was significantly decreased in goose fatty liver vs. the normal liver (P<0.05), indicating that miR-143 may exert both local and systematic effects by inhibiting the expression of IGFBP5, thus promoting the development of goose fatty liver. In conclusion, we identified several miRNAs, including those we validated (i.e., miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p) that may serve as candidate markers in the diagnosis of goose fatty liver as well as local and global regulators contributing to the development of goose fatty liver.

16.
EBioMedicine ; 75: 103750, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922323

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have recently emerged as essential biomarkers of cancer progression. However, studies are limited regarding lncRNAs correlated with recurrence and fluorouracil-based adjuvant chemotherapy (ACT) in stage II/III colorectal cancer (CRC). METHODS: 1640 stage II/III CRC patients were enrolled from 15 independent datasets and a clinical in-house cohort. 10 prevalent machine learning algorithms were collected and then combined into 76 combinations. 109 published transcriptome signatures were also retrieved. qRT-PCR assay was performed to verify our model. FINDINGS: We comprehensively identified 27 stably recurrence-related lncRNAs from multi-center cohorts. According to these lncRNAs, a consensus machine learning-derived lncRNA signature (CMDLncS) that exhibited best power for predicting recurrence risk was determined from 76 kinds of algorithm combinations. A high CMDLncS indicated unfavorable recurrence and mortality rates. CMDLncS not only could work independently of common clinical traits (e.g., AJCC stage) and molecular features (e.g., microsatellite state, KRAS mutation), but also presented dramatically better performance than these variables. qRT-PCR results from 173 patients further verified our in-silico findings and assessed its feasible in different centers. Comparisons of CMDLncS with 109 published transcriptome signatures further demonstrated its predictive superiority. Additionally, patients with high CMDLncS benefited more from fluorouracil-based ACT and were characterized by activation of stromal and epithelial-mesenchymal transition, while patients with low CMDLncS suggested the sensitivity to bevacizumab and displayed enhanced immune activation. INTERPRETATION: CMDLncS provides an attractive platform for identifying patient at high risk of recurrence and could optimize precision treatment to improve the clinical outcomes in stage II/III CRC. FUNDING: This study was supported by the National Natural Science Foundation of China (81,972,663); Henan Province Young and Middle-Aged Health Science and Technology Innovation Talent Project (YXKC2020037); and Henan Provincial Health Commission Joint Youth Project (SB201902014).

17.
Phytopathology ; 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732077

RESUMO

Broomcorn millet smut caused by the fungus Anthracocystis destruens is one of the most destructive diseases in broomcorn millet production. The life cycle of A. destruens and host defense responses against A. destruens remain elusive. Here we investigated the disease symptom development and the parasitic process of A. destruens as well as the ultrastructure of the host-pathogen interface. The results showed that there are four typical symptoms of broomcorn millet smut, which are blackfly, cluster leaves, hedgehog head and incomplete fruiting. A. destruens colonizes all tissues of broomcorn millet but only produces teliospores in the inflorescence. After infection, A. destruens proliferates in the host likely in a systemic manner. Ultrastructural study of the infected inflorescence showed that the pathogen grows intercellularly and intracellular within the host. The host active defense response against pathogen invasion, includes host secrets callose analogs and highly electron-dense deposits to prevent pathogen infection.

18.
Virus Res ; 308: 198630, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788643

RESUMO

The oak lappet moth, Trabala vishnou gigantina is a forest insect pest that damages broad-leaf trees severely. Trabala vishnou gigantina nucleopolyhedrovirus (TrviNPV) has been isolated from a naturally infected T. vishnou gigantina larva and investigated for its biology and the potential to be a biological control agent against its insect host. TrviNPV was characterized by electron microscope of occlusion bodies (OBs), genomic sequencing and field control efficacy. TrviNPV OBs exhibited an irregular polyhedral shape varying in size from 0.99 to 3.99 µm with multiple nucleocapsids per virion. The genome of this virus was 165 657 bp in length with 40.33% GC content and encoded 146 putative ORFs including the 38 baculovirus core genes. TrviNPV is a group II alphabaculovirus that encodes F protein and lacks the gp64 gene specific to group I alphabaculoviruses. Phylogeny and Kimura-2 parameter analysis revealed TrviNPV to be a novel species and closest to ArdiNPV, EupsNPV and OrleNPV. Bioassays and field trials in a shrubland revealed that TrviNPV was virulent and effective to control T. vishnou gigantina in arid semi-desert region. This work firstly reported the whole genome of TrviNPV as well as its biological characters for a possibility to develop this virus as bio-pesticide in the future.

19.
Animals (Basel) ; 11(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34827906

RESUMO

Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment groups (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1ß, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.

20.
Trends Biotechnol ; 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34799183

RESUMO

Microscopy imaging of living cells is becoming a pivotal, noninvasive, and highly specific tool in metabolic engineering to visualize molecular dynamics in industrial microorganisms. This review describes the different microscopy methods, from fluorescence to super resolution, with application in microbial bioengineering. Firstly, the role and importance of microscopy imaging is analyzed in the context of strain design. Then, the advantages and disadvantages of different microscopy technologies are discussed, including confocal laser scanning microscopy (CLSM), spatial light interference microscopy (SLIM), and super-resolution microscopy, followed by their applications in synthetic biology. Finally, the future perspectives of live-cell imaging and their potential to transform microbial systems are analyzed. This review provides theoretical guidance and highlights the importance of microscopy in understanding and engineering microbial metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...