Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(50): 46776-46782, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31755259

RESUMO

Design and fabrication of flexible Li-ion batteries (FLIBs) with excellent electrochemical and structural stability via scalable fabrication techniques are important for their practical applications. A wide range of FLIBs with excellent flexibility have been reported. However, sophisticated designs and complex fabrication techniques are often used in fabricating FLIBS, making them difficult to be realized in industrial production. Here, we fabricate FLIBs with an integrated structure by assembling the LiFePO4 cathode, Li4Ti5O12 anode, graphene current collectors, and poly(vinylidene fluoride) (PVDF) electrolyte all together on commercial printing paper via conventional and scalable Meyer rod coating. In the design, the commercial paper serves as a flexible substrate to enable good flexibility of the device, and the paper is coated twice with PVDF to avoid the short-circuit problem and create a strong binding to integrate the device. The resultant integrated FLIBs exhibit excellent internal structural stability and good electrochemical performance under cycling bending for 100 times.

2.
J Nanosci Nanotechnol ; 19(6): 3597-3603, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744791

RESUMO

This study represents a facile but effective electrodeposition method to fabricate vanadium dioxide (VO2) thin films on fluorine doped tin oxide (FTO) glass at room temperature. The film microstructure (thickness, surface structure, particle size and composition) and relevant optical properties were investigated by several advanced techniques. The pertinent variables that can affect the thin film formation and structure, such as deposition potential, time and post-treatment annealing temperature were also studied. It was found that the film thickness could be tuned from 35 to 130 nm by adjusting the potential from -1.22 to -1.35 V, and consequently leading to optical transmittance decreasing from ∼60% to ∼38% in the wavelength of 500-1000 nm, further confirmed by computational simulations using three-dimension (3D) finite-difference time-domain method. The hysteresis loop of the generated VO2 film on FTO glass shows that the phase transition temperature from monoclinic to rutile is around 73 °C, a little higher than pure monoclinic VO2 (∼68 °C) in this study. This proposed electrodeposition method is possible to extend into obtaining metal oxide films with tuneable surface properties for thermochromic smart devices.

3.
Electrophoresis ; 39(12): 1460-1465, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29543983

RESUMO

This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications.


Assuntos
Microfluídica , Ligas/química , Desenho de Equipamento/instrumentação , Dispositivos Lab-On-A-Chip , Paládio/química , Tensão Superficial , Estanho/química
4.
Small ; 13(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27322357

RESUMO

Binary 1D nanowires consisting of both SnO2 nanoparticles and Au nanorods are fabricated through a "substrate-particle solution template" assembling method, which shows highly enhanced gas sensitivity toward acetone under ambient conditions.

5.
ACS Nano ; 11(1): 407-415, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28009507

RESUMO

Dual-phase transformation has been developed as a template-free surface patterning technique in this study. Ordered VO2 honeycomb structures with a complex hierarchy have been fabricated via this method, and the microstructures of the obtained VO2(M) coatings are tunable by tailoring the pertinent variables. The VO2(M) honeycomb-structured coatings have excellent visible light transmittance at 700 nm (Tvis) up to 95.4% with decent solar modulating ability (ΔTsol) of 5.5%, creating the potential as ultratransparent smart solar modulating coatings. Its excellent performance has been confirmed by a proof-of-principle demonstration. The dual-phase transformation technique has dramatically simplified the conventional colloidal lithography technique as a scalable surface patterning technique for achieving high-performance metal oxide coatings with diverse applications, such as catalysis, sensing, optics, electronics, and superwettable materials.

6.
ACS Appl Mater Interfaces ; 7(46): 25658-68, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26535913

RESUMO

Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 µM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.


Assuntos
Materiais Biocompatíveis/síntese química , Carbono/química , Ouro/química , Hipertermia Induzida , Nanotecnologia/métodos , Fototerapia , Teste de Materiais , Nanotubos/química , Nanotubos/ultraestrutura , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA