Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Front Genet ; 12: 756784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721544

RESUMO

Over 50% of diffuse large B-cell lymphoma (DLBCL) patients are diagnosed at an advanced stage. Although there are a few therapeutic strategies for DLBCL, most of them are more effective in limited-stage cancer patients. The prognosis of patients with advanced-stage DLBCL is usually poor with frequent recurrence and metastasis. In this study, we aimed to identify gene expression and network differences between limited- and advanced-stage DLBCL patients, with the goal of identifying potential agents that could be used to relieve the severity of DLBCL. Specifically, RNA sequencing data of DLBCL patients at different clinical stages were collected from the cancer genome atlas (TCGA). Differentially expressed genes were identified using DESeq2, and then, weighted gene correlation network analysis (WGCNA) and differential module analysis were performed to find variations between different stages. In addition, important genes were extracted by key driver analysis, and potential agents for DLBCL were identified according to gene-expression perturbations and the Crowd Extracted Expression of Differential Signatures (CREEDS) drug signature database. As a result, 20 up-regulated and 73 down-regulated genes were identified and 79 gene co-expression modules were found using WGCNA, among which, the thistle1 module was highly related to the clinical stage of DLBCL. KEGG pathway and GO enrichment analyses of genes in the thistle1 module indicated that DLBCL progression was mainly related to the NOD-like receptor signaling pathway, neutrophil activation, secretory granule membrane, and carboxylic acid binding. A total of 47 key drivers were identified through key driver analysis with 11 up-regulated key driver genes and 36 down-regulated key diver genes in advanced-stage DLBCL patients. Five genes (MMP1, RAB6C, ACCSL, RGS21 and MOCOS) appeared as hub genes, being closely related to the occurrence and development of DLBCL. Finally, both differentially expressed genes and key driver genes were subjected to CREEDS analysis, and 10 potential agents were predicted to have the potential for application in advanced-stage DLBCL patients. In conclusion, we propose a novel pipeline to utilize perturbed gene-expression signatures during DLBCL progression for identifying agents, and we successfully utilized this approach to generate a list of promising compounds.

2.
Front Microbiol ; 12: 768767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777322

RESUMO

This experiment aims to explore the effects of compound enzyme preparation substituting chlortetracycline on growth performance, serum immune markers, and antioxidant capacity and intestinal health in weaned piglets. A total of twenty-four 28-day-old "Duroc × Landrace × Yorkshire" weaned piglets with an average initial weight of 7.25 ± 0.25 kg were randomly divided into three groups according to their body weight, with eight replicates in each group and one pig in each replicate. The three dietary treatments were basal diet (CON), basal diet + 1,000 mg/kg compound enzyme preparation (cellulase 4,000 IU/g, α-amylase 1,000 IU/g, ß-glucanase 150 IU/g, and neutral protease 3,000 IU/g, CE), and basal diet + 75 mg/kg chlortetracycline (CTC). The animal experiment lasted for 28 days and was divided into two stages: the early stage (0-14 days) and the late stage (15-28 days). The results showed that (1) compared with the CON, the CE and CTC significantly increased the ADG of weaned piglets during the early and whole period of experiment (p < 0.05), decreased the F:G in the whole experiment period (p < 0.05), and diarrhea rate in the early stage (p < 0.01). (2) Compared with the CON, the apparent total tract digestibility of ADF and NDF was significantly increased in pigs fed the CE diet in the early and late stages of experiment (p < 0.05) with no significant difference compared with the CTC. (3) Compared with the CON, the concentrations of serum IgA and SOD in weaned piglets were significantly increased in the CE group in the early stage of the experiment (p < 0.05). (4) Compared with the CON group, the acetic acid, propionic acid, and total VFA contents in cecum and colon segments were elevated in the CE group (p < 0.05) with no significant difference compared with the CTC. (5) Compared with the CON group, the villus height of duodenum and jejunum and the ratio of villus height to recess depth of ileum were increased in the CE and CTC group (p < 0.05). (6) Compared with the CON group, the abundance of Lactobacillus significantly increased (p < 0.01) while the abundance of Escherichia coli decreased in the CE group and CTC group (p < 0.01). In conclusion, CE preparation instead of CTC can significantly improve the nutrient digestibility, the immunity, antioxidant capacity, and intestinal health of pigs, which may contribute to the improved growth performance of piglets.

3.
mBio ; : e0220621, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34749527

RESUMO

Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.

4.
Small ; : e2104205, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741400

RESUMO

The further commercialization of renewable energy conversion and storage technologies requires heterogeneous electrocatalysts that meet the exacting durability target. Studies of the stability and degradation mechanisms of electrocatalysts are expected to provide important breakthroughs in stability issues. Accessible in situ/operando techniques performed under realistic reaction conditions are therefore urgently needed to reveal the nature of active center structures and establish links between the structural motifs in a catalyst and its stability properties. This review highlights recent research advances regarding in situ/operando techniques and improves the understanding of the stabilities of advanced heterogeneous electrocatalysts used in a diverse range of electrochemical reactions; it also proposes some degradation mechanisms. The review concludes by offering suggestions for future research.

5.
Front Plant Sci ; 12: 745408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745176

RESUMO

The cultivated peanut (Arachis hypogaea L.), which is rich in edible oil and protein, is widely planted around the world as an oil and cash crop. However, aflatoxin contamination seriously affects the quality safety of peanuts, hindering the development of the peanut industry and threatening the health of consumers. Breeding peanut varieties with resistance to Aspergillus flavus infection is important for the control of aflatoxin contamination, and understanding the genetic basis of resistance is vital to its genetic enhancement. In this study, we reported the quantitative trait locus (QTL) mapping of resistance to A. flavus infection of a well-known resistant variety, J11. A mapping population consisting of 200 recombinant inbred lines (RILs) was constructed by crossing a susceptible variety, Zhonghua 16, with J11. Through whole-genome resequencing, a genetic linkage map was constructed with 2,802 recombination bins and an average inter-bin distance of 0.58 cM. Combined with phenotypic data of an infection index in 4 consecutive years, six novel resistant QTLs with 5.03-10.87% phenotypic variances explained (PVE) were identified on chromosomes A05, A08, B01, B03, and B10. The favorable alleles of five QTLs were from J11, while that of one QTL was from Zhonghua 16. The combination of these favorable alleles significantly improved resistance to A. flavus infection. These results could contribute greatly to the understanding of the genetic basis of A. flavus resistance and could be meaningful in the improvement of further resistance in peanuts.

7.
Blood ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610101

RESUMO

Proton export is often considered a detoxifying process in animal cells with monocarboxylate symporters co-exporting excessive lactate and protons during glycolysis or the Warburg effect. Here we report a novel mechanism by which lactate/H+ export is sufficient to induce cell growth. Increased lactate/proton export induces intracellular alkalization that selectively activates catalysis by key metabolic gatekeeper enzymes, HK1/PKM2/G6PDH, thereby enhancing glycolytic and pentose phosphate pathway carbon flux. The result is increased nucleotide levels, NADPH/NADP+ ratio and cell proliferation. Simply increasing the lactate/proton symporter, MCT4, or sodium-proton antiporter, NHE1 was sufficient to increase intracellular-pH (pHi) and give normal hematopoietic cells a significant competitive growth advantage in vivo. This process does not require additional cytokine triggers and is exploited in malignancy where leukemogenic mutations epigenetically increase MCT4. Inhibiting MCT4 decreased intracellular pH, carbon flux and eliminated acute myeloid leukemia-initiating-cells without cytotoxic chemotherapy. Intracellular alkalization is a primitive mechanism by which proton partitioning can directly reprogram carbon metabolism for cell growth.

8.
Front Oncol ; 11: 698373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616673

RESUMO

Background: Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. Objective: This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. Methods: A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. Results: Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. Conclusion: Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.

9.
Front Oncol ; 11: 734708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631567

RESUMO

Ovarian cancer is a common gynecologic aggressive neoplasm. The mortality of ovarian cancer is top among gynecologic malignancies due to the insidious onset, atypical early symptoms, and chemoresistance. Therefore, it is urgent to seek another promising treatment for ovarian cancer. Purified vitexin compound 1 (VB1) is a kind of neolignan from the seed of traditional Chinese herb vitex negundo that possessed diverse pharmacological effects. VB1 can exhibit anti-neoplastic activities against various cancers. However, the role of VB1 in ovarian cancer treatment has not been elaborated, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of VB1 in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. In vitro, VB-1 can effectively suppress the proliferation, induce apoptosis, and block cell cycle at G2/M phase with a concentration dependent manner in ovarian cancer cells. Western blot assay showed that VB1 induce apoptosis via upregulating expression of cleaved-caspase3 and block cell cycle at G2/M phase through upregulating expression of P21. Meanwhile, VB1 can effectively inhibit tumor growth in xenograft mouse model. Our research indicated that VB1 can significantly exert its anti-neoplastic effects and may represent a new class of agents in ovarian cancer therapy.

10.
Mol Cancer ; 20(1): 132, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649567

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. Liver cancer initiating cells also called cancer stem cells (CSCs) play a critical role in resistance against typical therapy and high tumor-initiating potential. However, the role of the novel circular RNA (circRNA) circIPO11 in the maintenance of liver cancer initiating cells remains elusive. METHODS: CircRNAs highly conserved in humans and mice were identified from 3 primary HCC samples by circRNA array. The expression and function of circIPO11 were further evaluated by Northern blot, limiting dilution xenograft analysis, chromatin isolation by RNA purification-PCR assay (ChIRP) and HCC patient-derived tumor cells (PDC) models. CircIpo11 knockout (KO) mice were generated by a CRISPR/Cas9 technology. RESULTS: CircIPO11 is highly expressed in HCC tumor tissues and liver CSCs. CircIPO11 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, circIPO11 recruits TOP1 to GLI1 promoter to trigger its transcription, leading to the activation of Hedgehog signaling. Moreover, GLI1 is also highly expressed in HCC tumor tissues and liver CSCs, and TOP1 expression levels positively correlate with the metastasis, recurrence and survival of HCC patients. Additionally, circIPO11 knockout in mice suppresses the progression of chemically induced liver cancer development. CONCLUSION: Our findings reveal that circIPO11 drives the self-renewal of liver CSCs and promotes the propagation of HCC via activating Hedgehog signaling pathway. Antisense oligonucleotides (ASOs) against circIPO11 combined with TOP1 inhibitor camptothecin (CPT) exert synergistic antitumor effect. Therefore, circIPO11 and the Hedgehog signaling pathway may provide new potential targets for the treatment of HCC patients.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34699348

RESUMO

How to effectively fuse cross-modal information is a key problem for RGB-D salient object detection. Early fusion and result fusion schemes fuse RGB and depth information at the input and output stages, respectively, and hence incur distribution gaps or information loss. Many models instead employ a feature fusion strategy, but they are limited by their use of low-order point-to-point fusion methods. In this paper, we propose a novel mutual attention model by fusing attention and context from different modalities. We use the non-local attention of one modality to propagate long-range contextual dependencies for the other, thus leveraging complementary attention cues to achieve high-order and trilinear cross-modal interaction. We also propose to induce contrast inference from the mutual attention and obtain a unified model. Considering that low-quality depth data may be detrimental to model performance, we further propose a selective attention to reweight the added depth cues. We embed the proposed modules in a two-stream CNN for RGB-D SOD. Experimental results demonstrate the effectiveness of our proposed model. Moreover, we also construct a new and challenging large-scale RGB-D SOD dataset of high-quality, which can promote both the training and evaluation of deep models.

12.
Parasit Vectors ; 14(1): 499, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565467

RESUMO

BACKGROUND: Anopheles sinensis is a dominant vector for malaria transmission in Asian countries. Voltage-gated sodium channel (VGSC) mutation-mediated knock-down resistance (kdr) has developed in many A. sinensis populations because of intensive and long-term use of pyrethroids. Our previous study showed that multiple mutations at position 1014 of the VGSC were heterogeneously distributed in A. sinensis populations across Sichuan, China. METHODS: To understand resistance genotypes at the haplotype level and reconstruct the phylogenetic relationship of VGSC haplotypes, a cost-effective next-generation sequencing (NGS)-based amplicon sequencing approach was established to clarify haplotypes containing codon 1014 of the VGSC gene from a total of 446 adults collected in 12 locations of Sichuan, China. RESULTS: Nineteen (19) haplotypes were identified, including 11 wild 1014L, 6 resistance 1014F, and 2 resistance 1014C haplotypes. We found that resistance haplotypes of A. sinensis VGSC were widely distributed at frequencies ranging from 3.67 to 92.61%. The frequencies of the 1014C haplotype in the southeast of Sichuan (Luzhou, Guangan, and Suining) were relatively higher than those in other sampling locations. Phylogenetic analyses support that kdr-type mutation at position 1014 is not singly originated and resistance 1014C haplotypes evolve from TTT-encoding 1014F. CONCLUSIONS: A cost-effective next-generation sequencing (NGS)-based amplicon sequencing approach has been established in this study. The data revealed the patchy distribution of VGSC resistance haplotypes with overall high frequencies in Sichuan, China. Phylogenetic analyses support multiple origins and sequential evolution (1014L → 1014F → 1014C) for kdr-type mutations in A. sinensis.

13.
Mater Sci Eng C Mater Biol Appl ; 129: 112351, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579877

RESUMO

Phototherapy has attracted increasing attention in cancer therapy owing to its non-invasive nature, high spatiotemporal selectivity, and negligible side effects. However, a single photosensitizer often exhibits poor photothermal conversion efficiency or insufficient reactive oxygen species (ROS) productivity. Even worse, the ROS can be consumed by tumor overexpressed reductive glutathione, resulting in severely compromised phototherapy. In this paper, we prepared a MnII-coordination driven dual-photosensitizers co-assemblies (IMCP) for imaging-guided self-enhanced PDT/PTT. Specifically, a photothermal agent indocyanine green (ICG), a photodynamic agent chlorin e6 (Ce6), and a transition metal ion (MnII/III) were chosen to synthesize the nanodrug via coordination-driven co-assembly. The as-prepared IMCP exhibited extremely high photosensitizer payload (96 wt%), excellent physiological stability, and outstanding tumor accumulation. Moreover, the existence of MnII not only assists the nanostructure formation but also could competitively coordinate with GSH to minimize the unnecessary ROS consumption, thus improving PDT efficiency. Meanwhile, benefiting from the intrinsic fluorescence, photoacoustic imaging ability of photosensitizers, and the MRI contrast potential of MnII/III, IMCP exhibited superior imaging potential for guiding tumor phototherapy. By changing the excitation wavelength suitably, IMCP could realize the switch between PTT and PDT. In short, the dual-PSs co-assembled nanotheranostic has great potential for multi-modal imaging guided phototherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina , Imagem Multimodal , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia
14.
BMC Geriatr ; 21(1): 486, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493228

RESUMO

BACKGROUND: Green tea has been one of the most popular beverages in China since ancient times. Mixed results concerning the effect of green tea consumption on the incidence of hypertension have been published over the past decades. However, no previous studies have focused on longevous individuals in China and the sex differences in the association between habitual green tea intake and hypertension. METHODS: The data extracted from the database of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in 2018 were used for a secondary analysis. Logistic regression models were employed to examine the odds ratio (OR) of daily green tea consumption on the incidence of hypertension by sex. RESULTS: A total of 9277 individuals were included in the analysis (39.8% were men). The included individuals had a mean age of 80.9 and 84.8 years for those who drank green tea daily and those who had never, respectively (p <  0.001). The incidence of hypertension varied at baseline according to green tea drinking habit and sex. For women who had a habitual green tea intake or had never drunk green tea, the incidence of hypertension was 47.3 and 43.9%, respectively (p = 0.241), whereas it was 51.6 and 39.7% for men (p <  0.001). After adjusting for potential confounders, a 38% increase in the risk of hypertension was observed in men who consumed green tea daily (OR, 1.38; 95% CI, 1.15-1.67; p <  0.001). CONCLUSIONS: Chinese longevous men had a 38% higher risk of developing hypertension when drinking green tea daily. However, no effect of green tea consumption on the incidence of hypertension in women was found. More attention should be paid to the lifestyle of longevous individuals for health promotion, and a sex-specific approach to deliver care for very elderly people is warranted.


Assuntos
Hipertensão , Chá , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Incidência , Masculino , Fatores de Risco , Caracteres Sexuais
15.
Front Microbiol ; 12: 734389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539619

RESUMO

The study investigated the impact of fermented cottonseed meal (FCSM) on growth performance, immunity and antioxidant properties, nutrient digestibility, and gut microbiota of weaned piglets by replacing soybean meal with FCSM in the diet. The experimental piglets were fed with either the soybean meal diet (SBM group) or fermented cottonseed meal diet (FCSM group) for 14days after weaning. The digestibility of dry matter (DM), organic matter (OM), crude protein (CP), gross energy (GE), amino acids and nitrogen was higher in the FCSM diet than those in the SBM diet (p<0.05). The piglets in the FCSM group showed greater growth performance and lower diarrhea rate than those in the SBM group (p<0.05). The concentration of serum immunoglobulin G (IgG) and antioxidase, intestinal and hepatic antioxidase were increased and the concentration of malondialdehyde (MDA) in the serum was decreased in those piglets in the FCSM group compared to those piglets in the SBM group (p<0.05). The piglets in the FCSM group had a higher concentration of volatile fatty acids (VFAs) in their ileum and cecum and a higher Simpson index of ileum than piglets in the SBM group (p<0.05). The relative abundance of Lactobacillus and [Ruminococcus]_torques_group in ileum and Intestinibacter, norank_f_Muribaculaceae, unclassified_o_Lactobacillales and [Eubacterium]_coprostanoligenes_group in cecum were enhanced in piglets fed with the FCSM diet, whereas the relative abundance of Sarcina and Terrisporobacter were increased in piglets fed with the SBM diet. Overall, FCSM replacing SBM improved the growth performance, immunity and antioxidant properties, and nutrient digestibility; possibly via the alterant gut microbiota and its metabolism of weaned piglets. Graphical AbstractFermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. SBM, soybean meal; FCSM, fermented cottonseed meal.

16.
ACS Appl Mater Interfaces ; 13(37): 43925-43936, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499485

RESUMO

Chemodynamic therapy (CDT) that utilizes Fenton-type reactions to convert endogenous hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) is a promising strategy in anticancer treatment, but the overexpression of glutathione (GSH) and limited endogenous H2O2 make the efficiency of CDT unsatisfactory. Here, an intelligent nanoplatform CuO2@mPDA/DOX-HA (CPPDH), which induced the depletion of GSH and the self-supply of H2O2, was proposed. When CPPDH entered tumor cells through the targeting effect of hyaluronic acid (HA), a release of Cu2+ and produced H2O2 were triggered by the acidic environment of lysosomes. Then, the Cu2+ was reduced by GSH to Cu+, and the Cu+ catalyzed H2O2 to produce •OH. The generation of •OH could be distinctly enhanced by the GSH depletion and H2O2 self-sufficiency. Besides, an outstanding photothermal therapy (PTT) effect could be stimulated by NIR irradiation on mesoporous polydopamine (mPDA). Meanwhile, mPDA was an excellent photoacoustic reagent, which could monitor the delivery of nanocomposite materials through photoacoustic (PA) imaging. Moreover, the successful delivery of doxorubicin (DOX) realized the integration of chemotherapy, PTT, and CDT. This strategy could solve the problem of insufficient CDT efficacy caused by the limited H2O2 and overexpression of GSH. This multifunctional nanoplatform may open a broad path for self-boosting CDT and synergistic therapy.

17.
Nature ; 596(7872): 353-356, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408333

RESUMO

On Earth's surface, there are only a handful of high-quality astronomical sites that meet the requirements for very large next-generation facilities. In the context of scientific opportunities in time-domain astronomy, a good site on the Tibetan Plateau will bridge the longitudinal gap between the known best sites1,2 (all in the Western Hemisphere). The Tibetan Plateau is the highest plateau on Earth, with an average elevation of over 4,000 metres, and thus potentially provides very good opportunities for astronomy and particle astrophysics3-5. Here we report the results of three years of monitoring of testing an area at a local summit on Saishiteng Mountain near Lenghu Town in Qinghai Province. The altitudes of the potential locations are between 4,200 and 4,500 metres. An area of over 100,000 square kilometres surrounding Lenghu Town has a lower altitude of below 3,000 metres, with an extremely arid climate and unusually clear local sky (day and night)6. Of the nights at the site, 70 per cent have clear, photometric conditions, with a median seeing of 0.75 arcseconds. The median night temperature variation is only 2.4 degrees Celsius, indicating very stable local surface air. The precipitable water vapour is lower than 2 millimetres for 55 per cent of the night.

18.
Theor Appl Genet ; 134(11): 3721-3730, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34379146

RESUMO

KEY MESSAGE: AhRt1 controlling red testa color in peanut was fine-mapped to an interval of 580 kb on chromosome A03, and one gene encoding bHLH transcriptional factor was identified as the putative candidate gene. Peanut with red testa has higher nutritional and economic value than the traditional pink testa varieties. Identification of genes controlling red testa color will accelerate the breeding program and facilitate uncovering the genetic mechanism. In this study, in order to identify gene underlying the red testa color in peanut, a F2 population derived from a cross between a pink testa peanut variety "Fuhua 8" and a red testa variety "Quanhonghua 1" was constructed. The genetic analysis for the F2 population revealed that the red testa color was controlled by one single dominant locus. This locus, named as AhRt1 (Arachis hypogaea Red Testa 1), was preliminary identified in chromosome A03 by BSA-sequencing analysis. Using a segregation mapping population, AhRt1 was fine-mapped to a 580-kb genomic region by substitution mapping strategy. Gene candidate analysis suggested that one predicted gene encoding bHLH transcriptional factor may be the possible candidate gene for AhRt1. A diagnostic marker closely linked to candidate gene has been developed for validating the fine-mapping result in different populations and peanut germplasm. Our findings will benefit the breeding program for developing new varieties with red testa color and laid foundation for map-based cloning gene responsible for red testa in peanut.


Assuntos
Arachis/genética , Genes Dominantes , Genes de Plantas , Pigmentação/genética , Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mapeamento Cromossômico , Cor , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único
19.
Bioresour Technol ; 341: 125815, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34454234

RESUMO

To solve the central problems caused by traditional composting treatments, such as long-time consumption and poor regulation effects, this study used three fermentation methods and four enzymes to develop rapid and directional regulation methods to convert wheat straw into a suitable substrate. The results showed that the mixed anaerobic method led to better pH (4.39-5.75) and EC values (1.27-1.89 mS/cm) in the straw substrates, while the aerobic method retained more nutrients and increased lignin and cellulose contents by 5.07-8.04% and 1.52-3.32%. The cellulase mixed with hemicellulase or laccase treatments all increased the crystallinity by 0.45-7.23%. The TG/DTG results showed that all treatments decreased the initial straw glass transition temperature, particularly when using the mixed anaerobic method, with decreases of 10.63-25.48 °C. Overall, mixed anaerobic fermentation and multiple enzymes, including cellulase, have been suggested as alternative biological modification methods for straw substrates.


Assuntos
Celulase , Triticum , Celulase/metabolismo , Fermentação , Lignina/metabolismo , Solo , Triticum/metabolismo
20.
J Agric Food Chem ; 69(33): 9597-9607, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378931

RESUMO

ß-Galacto-oligosaccharide (ß-GOS) showed great potential in ulcerative colitis (UC) adjuvant therapy. Herein, the preventive and prebiotic effect of enzymatic-synthesized α-linked galacto-oligosaccharide (α-GOS) was investigated in dextran sodium sulfate-induced colitis and gut microbiota dysbiosis mice. Compared with ß-GOS, the α-GOS supplement was more effective in improving preventive efficacy, promoting colonic epithelial barrier integrity, and alleviating inflammation cytokines. Moreover, the activation of the NOD-like receptor (NLR) family member NLRP3 inflammasome-mediated inflammation was significantly inhibited by both α-GOS and ß-GOS. Gut microbiota analysis showed that α-GOS treatment reshaped the dysfunctional gut microbiota. The subsequent Spearman's correlation coefficient analysis indicated that these gut microbiota changes were significantly correlated with the inflammatory parameters. These results suggested that the enzymatic-synthesized α-GOS is a promising therapeutic agent in UC prevention and adjuvant treatment by maintaining intestinal homeostasis.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Oligossacarídeos , Prebióticos , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...