Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 667
Filtrar
1.
Hum Cell ; 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981466

RESUMO

RNA-binding protein with multiple splicing 2 (RBPMS2) is a critical gene that encodes a member of the RNA-recognition-motif-containing protein family and is involved in the development and dedifferentiation of digestive smooth muscle cells. However, whether RBPMS2 has an effect on the prognosis of gastric cancer (GC) and its possible mechanism during GC progression remain unknown. Here, we collected 596 GC patients who underwent curative surgical resection to evaluate expression of RBPMS2. RBPMS2 was upregulated in GC tissues, and was associated with lymph node metastasis. We analysis the KEGG pathway and GO biological processes, cellular component and molecular function of RBPMS2 interactive genes, as well as RBPMS2-binding partner ESRP1 interactive genes. We also focus on the correlation analysis between EMT-related genes and RBPMS2/ESRP1. Finally, we analysed the correlation between RBPMS2 expression and chemotherapeutic drugs which may assist in GC therapy and demonstrated that RBPMS2 expression was associated with tumour mutation burden (TMB) and Microsatellite Instability (MSI), as well as immune infiltration level in GC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34994935

RESUMO

Planarians are widely used as water quality indicator species to provide early warning of harmful pollution in aquatic ecosystems. However, the impact of microplastics on freshwater planarians remains poorly investigated. Here we simulated waterborne microplastic exposure in the natural environments to examine the effect on the antioxidant defense system and microbiota in Dugesia japonica. The results showed that exposure to microplastics significantly changed the levels of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione S-transferase, indicating that microplastic exposure induces oxidative stress in planarians. High-throughput 16S rRNA gene sequencing results revealed that exposure to microplastics altered the diversity, abundance, and composition of planarian microbiota community. At phylum level, the relative abundance of the dominant phyla Proteobacteria and Bacteroidetes changed significantly after microplastic exposure. At genus level, the abundance of dominant genera also changed significantly, including Curvibacter and unclassified Chitinophagales. Predictive functional analysis showed that the microbiota of microplastic-exposed planarians exhibited an enrichment in genes related to fatty acid metabolism. Overall, these results showed that microplastics can cause oxidative stress and microbiota dysbiosis in planarians, indicating that planarians can serve as an indicator species for microplastic pollution in freshwater systems.

3.
Cell Mol Immunol ; 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983946

RESUMO

Sepsis is a heterogeneous syndrome induced by a dysregulated host response to infection. Glycolysis plays a role in maintaining the immune function of macrophages, which is crucial for severely septic patients. However, how the pathways that link glycolysis and macrophages are regulated is still largely unknown. Here, we provide evidence to support the function of KLF14, a novel Krüppel-like transcription factor, in the regulation of glycolysis and the immune function of macrophages during sepsis. KLF14 deletion led to significantly increased mortality in lethal models of murine endotoxemia and sepsis. Mechanistically, KLF14 decreased glycolysis and the secretion of inflammatory cytokines by macrophages by inhibiting the transcription of HK2. In addition, we confirmed that the expression of KLF14 was upregulated in septic patients. Furthermore, pharmacological activation of KLF14 conferred protection against sepsis in mice. These findings uncover a key role of KLF14 in modulating the inflammatory signaling pathway and shed light on the development of KLF14-targeted therapeutics for sepsis.

4.
Int J Biol Macromol ; 195: 124-131, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896463

RESUMO

The study aimed to develop pre-gelatinized starch-based orally disintegrating films (ODFs) containing catechin/ß-cyclodextrin (CAT/ß-CD) complex and to evaluate the influence of the complex on the physicochemical properties of the ODFs. SEM images showed that a compacter and more homogeneous ODFs were formed due to interactions between starch matrix and CAT/ß-CD. FTIR spectra demonstrated that the interactions between starches or starch and CAT/ß-CD were enhanced by hydrogen bonds. Thermal stability of ODFs was improved by incorporating CAT/ß-CD, its peak decomposition temperature was enhanced from 310.74 to 321.83 °C. Tensile strength was increased from 11.597 ± 0.153 to 22.172 ± 0.752 MPa, while elongation at break decreased by from 11.233% ± 1.079% to 3.633% ± 0.058%. The prepared ODFs have an acceptable in vitro disintegration time, which were between 9.03 ± 0.79 s and 42.23 ± 1.76 s. Antimicrobial test showed that ODFs incorporating CAT/ß-CD inhibited the growth of S. aureus and S. mutans successfully. The limited release of CAT molecules from the ODFs was also found. In addition, the ODFs have excellent antioxidant capacity. Its antioxidant activity remained at around 70% after 28 days of storage. The study indicated that the combination of ODFs and ß-CD complex have a high potential for the delivery of natural active ingredients.

5.
Nature ; 601(7892): 257-262, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34937940

RESUMO

The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.

6.
J Environ Sci (China) ; 113: 132-140, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963523

RESUMO

The concentration variation of C3-C11 non-methane hydrocarbons (NMHCs) collected in several types of commercial flexible bags and adsorption tubes was systematically investigated using a gas chromatography-flame ionization detector (GC-FID) system. The percentage loss of each NMHC in the polyvinyl fluoride (PVF) bags was less than 5% during a 7-hr storage period; significant NMHCs loss was detected in aluminum foil composite film and fluorinated ethylene propylene bags. The thermal desorption efficiency of NMHCs for adsorption tubes filled Carbopack B and Carboxen1000 sorbents was greater than 95% at 300℃, and the loss of NMHCs in the adsorption tubes during 20-days storage at 4℃ was less than 8%. The thermal desorption efficiency for C11 NMHCs in the adsorption tube filled with Carbograph 1 and Carbosieve SⅢ absorbents was less than 40% at 300℃, and pyrolysis of the absorbents at 330℃ interfered significantly with the measurements of some alkenes. The loss of alkenes was significant when NMHCs were sampled by cryo-enrichment at -90℃ in the presence of O3 for the online NMHC measurements, and negligible for enrichment using adsorption tubes at 25℃. Although O3 scrubbers have been widely used to eliminate the influence of O3 on NMHC measurements, the loss of NMHCs with carbon numbers greater than 8 was more than 10%. Therefore, PVF bags and adsorption tubes filled Carbopack B and Carboxen1000 sorbents were recommended for the sampling of atmospheric NMHCs.


Assuntos
Poluentes Atmosféricos , Metano , Adsorção , Poluentes Atmosféricos/análise , Carbono , Cromatografia Gasosa , Monitoramento Ambiental , Hidrocarbonetos/análise
7.
J Colloid Interface Sci ; 607(Pt 2): 1864-1875, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688977

RESUMO

The application of photocatalytic Hg0 oxidation under visible light is an up-and-coming method to solve the problem of energy shortage and environmental pollution. In this work, iodine doped Bi2MoO6 nanomaterials were prepared by one-step solvothermal method. The photocatalytic oxidation efficiency was greatly improved by iodine doping from 35.5% to 95.2% in the N2 + 4% O2 atmosphere under visible light. The main reason was that iodine doping decreased the band gap of the catalyst, expanded the optical response range and intensity, sped up the separation rate of photoinduced carriers and reduced the recombination rate. In addition, the flue gas components of SO2 and NO played a promoting role in mercury removal. Iodine doped Bi2MoO6 had good stability and still maintained high mercury removal efficiency after 5 cycles. Density functional theory (DFT) calculations and experiments demonstrated that iodine doping changed the valence band and conduction band of the catalyst, making superoxide ions, hydroxyl radicals and photoinduced hole become the active species of the catalytic reaction.

9.
Chemosphere ; 287(Pt 3): 132336, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826952

RESUMO

The elemental mercury was catalytically removed by V2O5/TiO2 and Ce doped V2O5/TiO2 catalysts under the UV irradiation at 30-160 °C to determine whether the catalysts could simultaneously have both thermo- and photo-catalytic activities. The physicochemical properties of catalysts were characterized by XRD, SEM, EDX, BET, XPS, UV-visible, PER and EIS. The experimental results demonstrated that V2O5/TiO2 and Ce-doped catalysts possessed both thermo- and photo-catalytic reactivities. A suitable reaction temperature (120 °C) and UV light had promoting effects on mercury removal efficiency. In addition, owing to the high oxidation capability as well good oxygen storage performance of Ce4+, Ce doping could greatly improve the mercury removal properties of the catalyst, reduce the inhibition of SO2 and make NO the component with enhanced effect. Ce doping also had the capability of enhancing the light absorption intensity in the UV region as well as the separation rate of photoinduced carriers. Finally, DFT calculations of V-Ti and Ce-V-Ti for Hg0 removal were investigated to further verify the experimental conclusion.


Assuntos
Mercúrio , Catálise , Oxirredução , Titânio
10.
Food Chem ; 368: 130804, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34404001

RESUMO

Herein, corn starch samples with different moisture contents (native corn starch, 30, 35, 40, 45, and 50%) were prepared by twin-screw extrusion, and the structural and physical properties were analyzed and correlated. Scanning electron microscopy observed the morphology, attenuated total reflection-Fourier transform infrared spectroscopy investigated the double helix structure, X-ray diffraction analyzed the crystal region, ion chromatography observed the chain length distribution, and rapid viscosity analyzer measured the viscosity of corn starch samples. We found that the corn starch crystallinity, degree of order, and double helix degree decreased with increasing moisture content. The moisture content has a crucial role in the peak viscosity, breakdown, final viscosity, and setback in pasting property experiments. With the increase in moisture content, the longer chain was transformed into a shorter chain, and the dispersion of molecular weight distribution continuously increased. This study provides a theoretical basis for the production of extruded corn starch.


Assuntos
Amido , Zea mays , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios X
11.
Food Chem ; 371: 131095, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537618

RESUMO

This study evaluated the influence of the main gluten fractions (gliadin and glutenin) on the physicochemical properties of binary wheat starch-Lauric acid (WS-LA) complexes during heat processing to explore the complex structure and digestion of WS-LA in the presence of gluten. Ternary WS-LA-glutenin complexes were prepared at different pH (5.2 and 7), whereas WS-LA-gliadin was prepared using ethanol, and their physicochemical properties were analyzed. We found that the addition of glutenin displayed a sharper and higher diffraction peak than samples without protein, which increased short-range order structure (low full width at half-maximum (FWHM) of the band at 480 cm-1) and good thermal stability (melting peak appeared at a higher temperature); the opposite was shown for gliadin. Even though glutenin increased the resistant starch (RS) content than WS-LA, all samples prepared in 65% ethanol showed higher RS content than WS-LA-glutenin samples. These findings might improve our understanding of the relationship between gliadin/glutenin and binary complexes and provide a theoretical basis for preparing starch-based foods with a low glycemic index.


Assuntos
Gliadina , Amido , Glutens , Triticum
12.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876591

RESUMO

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

13.
Neural Netw ; 146: 120-129, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34852298

RESUMO

Dense video captioning aims to automatically describe several events that occur in a given video, which most state-of-the-art models accomplish by locating and describing multiple events in an untrimmed video. Despite much progress in this area, most current approaches only encode visual features in the event location phase and they neglect the relationships between events, which may degrade the consistency of the description in the identical video. Thus, in the present study, we attempted to exploit visual-audio cues to generate event proposals and enhance event-level representations by capturing their temporal and semantic relationships. Furthermore, to compensate for the major limitation of not fully utilizing multimodal information in the description process, we developed an attention-gating mechanism that dynamically fuses and regulates the multi-modal information. In summary, we propose an event-centric multi-modal fusion approach for dense video captioning (EMVC) to capture the relationships between events and effectively fuse multi-modal information. We conducted comprehensive experiments to evaluate the performance of EMVC based on the benchmark ActivityNet Caption and YouCook2 data sets. The experimental results showed that our model achieved impressive performance compared with state-of-the-art methods.

14.
Crit Rev Food Sci Nutr ; : 1-19, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34872394

RESUMO

Biopolymeric films manufactured from materials such as starch, cellulose, protein, chitosan, gelatin, and polyvinyl alcohol are widely applied due to their complete biodegradability. While biopolymer-based films exhibit good gas barriers and optical properties when used in packaging, poor moisture resistance and mechanical properties limit their further application. Ultrasonication is a promising, effective technology for resolving these shortcomings, with its high efficiency, environmentally friendly nature, and safety. This review briefly introduces basic ultrasonication principles and their main effects on mechanical properties, transparency, color, microstructure, water vapor permeability, and oxygen resistance. We also describe the thermal performance of biopolymeric films. While ultrasonication has many positive effects on the physicochemical properties of biopolymeric films, many factors influence their behavior during film preparation, including power density, amplitude, treatment time, frequency, and the inherent properties of the source materials. This review focuses on biopolymers as film-forming materials and comprehensively discusses the promotional effects of ultrasonication on their physicochemical properties.

15.
Hum Genomics ; 15(1): 72, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930489

RESUMO

BACKGROUND: Due to the limitations of the current routine diagnostic methods, low-level somatic mosaicism with variant allele fraction (VAF) < 10% is often undetected in clinical settings. To date, only a few studies have attempted to analyze tissue distribution of low-level parental mosaicism in a large clinical exome sequencing (ES) cohort. METHODS: Using a customized bioinformatics pipeline, we analyzed apparent de novo single-nucleotide variants or indels identified in the affected probands in ES trio data at Baylor Genetics clinical laboratories. Clinically relevant variants with VAFs between 30 and 70% in probands and lower than 10% in one parent were studied. DNA samples extracted from saliva, buccal cells, redrawn peripheral blood, urine, hair follicles, and nail, representing all three germ layers, were tested using PCR amplicon next-generation sequencing (amplicon NGS) and droplet digital PCR (ddPCR). RESULTS: In a cohort of 592 clinical ES trios, we found 61 trios, each with one parent suspected of low-level mosaicism. In 21 parents, the variants were validated using amplicon NGS and seven of them by ddPCR in peripheral blood DNA samples. The parental VAFs in blood samples varied between 0.08 and 9%. The distribution of VAFs in additional tissues ranged from 0.03% in hair follicles to 9% in re-drawn peripheral blood. CONCLUSIONS: Our study illustrates the importance of analyzing ES data using sensitive computational and molecular methods for low-level parental somatic mosaicism for clinically relevant variants previously diagnosed in routine clinical diagnostics as apparent de novo.

16.
Nanomaterials (Basel) ; 11(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34947523

RESUMO

Generating clean and sustainable hydrogen from water splitting processes represent a practical alternative to solve the energy crisis. Ultrathin two-dimensional materials exhibit attractive properties as catalysts for hydrogen production owing to their large surface-to-volume ratios and effective chemisorption sites. However, the catalytically inactive surfaces of the transition metal dichalcogenides (TMD) possess merely small areas of active chemical sites on the edge, thus decreasing their possibilities for practical applications. Here, we propose a new class of out-of-plane deformed TMD (cTMD) monolayer to anchor transition metal atoms for the activation of the inert surface. The calculated adsorption energy of metals (e.g., Pt) on curved MoS2 (cMoS2) can be greatly decreased by 72% via adding external compressions, compared to the basal plane. The enlarged diffusion barrier energy indicates that cMoS2 with an enhanced fixation of metals could be a potential candidate as a single atom catalyst (SAC). We made a well-rounded assessment of the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), which are two key processes in water splitting. The optimized Gibbs free energy of 0.02 for HER and low overpotential of 0.40 V for OER can be achieved when the proper compression and supported metals are selected. Our computational results provide inspiration and guidance towards the experimental design of TMD-based SACs.

17.
Genet Med ; 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34906496

RESUMO

PURPOSE: BRG1/BRM-associated factor (BAF) complex is a chromatin remodeling complex that plays a critical role in gene regulation. Defects in the genes encoding BAF subunits lead to BAFopathies, a group of neurodevelopmental disorders with extensive locus and phenotypic heterogeneity. METHODS: We retrospectively analyzed data from 16,243 patients referred for clinical exome sequencing (ES) with a focus on the BAF complex. We applied a genotype-first approach, combining predicted genic constraints to propose candidate BAFopathy genes. RESULTS: We identified 127 patients carrying pathogenic variants, likely pathogenic variants, or de novo variants of unknown clinical significance in 11 known BAFopathy genes. Those include 34 patients molecularly diagnosed using ES reanalysis with new gene-disease evidence (n = 21) or variant reclassifications in known BAFopathy genes (n = 13). We also identified de novo or predicted loss-of-function variants in 4 candidate BAFopathy genes, including ACTL6A, BICRA (implicated in Coffin-Siris syndrome during this study), PBRM1, and SMARCC1. CONCLUSION: We report the mutational spectrum of BAFopathies in an ES cohort. A genotype-driven and pathway-based reanalysis of ES data identified new evidence for candidate genes involved in BAFopathies. Further mechanistic and phenotypic characterization of additional patients are warranted to confirm their roles in human disease and to delineate their associated phenotypic spectrums.

18.
Environ Sci Technol ; 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34932337

RESUMO

Mounting epidemiological evidence has documented the associations between long-term exposure to multiple air pollutants and increased mortality. There is a pressing need to determine whether risks persist at low concentrations including below current national standards. Air pollution levels have decreased in the United States, and better understanding of the health effects of low-level air pollution is essential for the amendment of National Ambient Air Quality Standards (NAAQS). A nationwide, population-based, open cohort study was conducted to estimate the association between long-term exposure to low-level PM2.5, NO2, O3, and all-cause mortality. The study population included all Medicare enrollees (ages 65 years or older) in the contiguous U.S. from 2001 to 2017. We further defined three low-exposure subcohorts comprised of Medicare enrollees who were always exposed to low-level PM2.5 (annual mean ≤12-µg/m3), NO2 (annual mean ≤53-ppb), and O3 (warm-season mean ≤50-ppb), respectively, over the study period. Of the 68.7-million Medicare enrollees, 33.1% (22.8-million, mean age 75.9 years), 93.8% (64.5-million, mean age 76.2 years), and 65.0% (44.7-million, mean age 75.6 years) were always exposed to low-level annual PM2.5, annual NO2, and warm-season O3 over the study period, respectively. Among the low-exposure cohorts, a 10-µg/m3 increase in PM2.5, 10-ppb increase in NO2, and 10-ppb increase in warm-season O3, were, respectively, associated with an increase in mortality rate ranging between 10 and 13%, 2 and 4%, and 12 and 14% in single-pollutant models, and between 6 and 8%, 1 and 3%, and 9 and 11% in tripollutant models, using three statistical approaches. There was strong evidence of linearity in concentration-response relationships for PM2.5 and NO2 at levels below the current NAAQS, suggesting that no safe threshold exists for health-harmful pollution levels. For O3, the concentration-response relationship shows an increasingly positive association at levels above 40-ppb. In conclusion, exposure to low levels of PM2.5, NO2, and warm-season O3 was associated with an increased risk of all-cause mortality.

19.
Environ Health Perspect ; 129(12): 127009, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34962424

RESUMO

BACKGROUND: Mounting evidence has shown that long-term exposure to fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] and ozone (O3) can increase mortality. However, the health effects associated with long-term exposure to nitrogen dioxide (NO2) are less clear, in particular the evidence is scarce for NO2 at low levels that are below the current international guidelines. METHODS: We constructed a population-based full cohort comprising all Medicare beneficiaries (aged ≥65, N=13,590,387) in the southeastern United States from 2000 to 2016, and we then further defined the below-guideline cohort that included only those who were always exposed to low-level NO2, that is, with annual means below the current World Health Organization guidelines (i.e., ≤21 ppb). We applied previously estimated spatially and temporally resolved NO2 concentrations and assigned annual means to study participants based on their ZIP code of residence. Cox proportional hazards models were used to examine the association between long-term exposure to low-level NO2 and all-cause mortality, adjusting for potential confounders. RESULTS: About 71.1% of the Medicare beneficiaries in the southeastern United States were always exposed to low-level NO2 over the study period. We observed an association between long-term exposure to low-level NO2 and all-cause mortality, with a hazard ratio (HR)= 1.042 (95% CI: 1.040, 1.045) in single-pollutant models and a HR= 1.047 (95% CI: 1.045, 1.049) in multipollutant models (adjusting for PM2.5 and O3), per 10-ppb increase in annual NO2 concentrations. The penalized spline indicates a linear exposure-response relationship across the entire NO2 exposure range. Medicare enrollees who were White, female, and residing in urban areas were more vulnerable to long-term NO2 exposure. CONCLUSION: Using a large and representative cohort, we provide epidemiological evidence that long-term exposure to NO2, even below the national and global ambient air quality guidelines, was approximately linearly associated with a higher risk of mortality among older adults, independent of PM2.5 and O3 exposure. Improving air quality by reducing NO2 emissions, therefore, may yield significant health benefits. https://doi.org/10.1289/EHP9044.

20.
Sci Total Environ ; 813: 151786, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942265

RESUMO

In animals, the gut microbiome is vital to growth, and changes in the composition of these microbial communities may affect growth and adaptability to the environment. Temperature is another important factor that influences the healthy growth of animals. To date, the mechanism by which juvenile European seabass (Dicentrarchus labrax) and their symbiotic flora adapt to changes in environmental temperature is not well understood. Therefore, we evaluated the effect of temperature on the gut microbiota and metabolism of European seabass juveniles. We used 16S rRNA gene amplicon sequencing and non-targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics to study the gut microbes of European seabass after 60 days of rearing of water temperature at 10 °C (T1), 15 °C (T2) and 20 °C (T3). At the phylum level, the abundance of the gut microbiota did not differ significantly among the three groups after 60 days of cultivation. At the genus level, however, the abundance of Faecalibacterium, Filifactor, Butyricicoccus, and Erysipelotrichaceae UCG-006 in the intestines differed significantly among the temperature groups. Compared with T2, the relative abundance of Filifactor in T1 was significantly increased, while Faecalibacterium was significantly decreased, while the relative abundance of Butyricicoccus and Erysipelotrichaceae UCG-006 in T3 was significantly increased. The LC-MS/MS analysis revealed 107 metabolites in the 10 °C group and 68 metabolites in the 20 °C group that differed significantly from those in the intestines of fish in the 15 °C control group. These metabolites are closely related to several metabolic pathways, including amino acid metabolism, glucose and lipid metabolism, and the tricarboxylic acid cycle. Correlation analysis of the Intestine microbiota, metabolic pathways, and metabolites identified metabolic pathways and metabolites that were strongly related to the observed significant differences in the microbiome among the temperature groups. These results show that temperature can induce significant changes in the gut microbiota and metabolism of European seabass juveniles, and that significant changes in metabolites may be mediated through the interaction of the microbiome and metabolic pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...