Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
J Healthc Inform Res ; : 1-16, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33426422

RESUMO

Countries across the world are in different stages of COVID-19 trajectory, among which many have implemented lockdown measures to prevent its spread. Although the lockdown is effective in such prevention, it may put the economy into a depression. Predicting the epidemic progression with the government switching the lockdown on or off is critical. We propose a transfer learning approach called ALeRT-COVID using attention-based recurrent neural network (RNN) architecture to predict the epidemic trends for different countries. A source model was trained on the pre-defined source countries and then transferred to each target country. The lockdown measure was introduced to our model as a predictor and the attention mechanism was utilized to learn the different contributions of the confirmed cases in the past days to the future trend. Results demonstrated that the transfer learning strategy is helpful especially for early-stage countries. By introducing the lockdown predictor and the attention mechanism, ALeRT-COVID showed a significant improvement in the prediction performance. We predicted the confirmed cases in 1 week when extending and easing lockdown separately. Our results show that lockdown measures are still necessary for several countries. We expect our research can help different countries to make better decisions on the lockdown measures.

2.
Nat Commun ; 12(1): 346, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436641

RESUMO

Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy.

3.
Gut ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431578

RESUMO

OBJECTIVE: Although COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus. METHODS: In this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma. RESULTS: Gut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase. CONCLUSION: Associations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.

4.
Cell ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33450207

RESUMO

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33399262

RESUMO

Immediate reutilization of discarded blood from surgery has not received much attention, leading to the waste of a large amount of autologous blood. We used a concentration gradient and high-voltage electrospinning technology to immediately prepare a scaffold material with high biological activity but without immunogenicity from autologous waste blood collected during surgery. Here, we fabricated and characterized a 90 mg/mL group, 110 mg/mL group, and 130 mg/mL group of fibrinogen (FBG) scaffolds. Analyses revealed that the FBG scaffolds had good film-forming properties and a clear fiber structure. in vitro cell viability experiments confirmed that the cells showed an increasing trend with increasing FBG concentrations. The cells grew well in the scaffold material and secreted more cell matrix. When human bone mesenchymal stem cells (hBMSCs) were cocultured with the scaffold material, the hBMSCs expressed osteogenic and chondrogenic biomarkers. The cellular scaffold complexes from the 3 groups were implanted in four full-thickness round wounds (Φ12 mm) on the dorsal back of each rat, the 130 mg/mL group showed a 90% reduction in wound size and the data compared to other groups were better at 14 day. These results suggest that electrospinning technology-based FBG scaffold materials derived from autologous waste blood may become an ideal tissue engineering scaffold and can be immediately used for autologous hemostasis, anti-adhesion films, and wound dressing in surgery.

6.
Nat Commun ; 12(1): 65, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397897

RESUMO

Fecal microbiota transplant (FMT) has emerged as a potential treatment for severe colitis associated with graft-versus-host disease (GvHD) following hematopoietic stem cell transplant. Bacterial engraftment from FMT donor to recipient has been reported, however the fate of fungi and viruses after FMT remains unclear. Here we report longitudinal dynamics of the gut bacteriome, mycobiome and virome in a teenager with GvHD after receiving four doses of FMT at weekly interval. After serial FMTs, the gut bacteriome, mycobiome and virome of the patient differ from compositions before FMT with variable temporal dynamics. Diversity of the gut bacterial community increases after each FMT. Gut fungal community initially shows expansion of several species followed by a decrease in diversity after multiple FMTs. In contrast, gut virome community varies substantially over time with a stable rise in diversity. The bacterium, Corynebacterium jeikeium, and Torque teno viruses, decrease after FMTs in parallel with an increase in the relative abundance of Caudovirales bacteriophages. Collectively, FMT may simultaneously impact on the various components of the gut microbiome with distinct effects.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/virologia , Micobioma , Adolescente , Biodiversidade , Humanos , Masculino , Microbiota
7.
Life Sci ; 264: 118626, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148417

RESUMO

AIMS: Circular RNAs (circRNAs) have been shown to play crucial roles in various biological processes and human diseases. However, their exact functions in ischemic stroke remain largely unknown. In this study, we explored the functional role of circRNA HECTD1 (circ-HECTD1) and its underlying mechanism in cerebral ischemia/reperfusion injury. METHODS: Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation (OGD) model in HT22 cells were used to mimic the cerebral ischemia/reperfusion injury. Brain infarct volume, flow cytometry, caspase 3 activity, NF-κB activity, and TUNEL staining were performed to evaluate the function of circ-HECTD1. Luciferase report assay was used to explore the regulatory mechanism. FINDINGS: The results showed that the expression of circ-HECTD1 and tumor necrosis factor receptor-associated factor 3 (TRAF3) was remarkably up-regulated, while miR-133b was down-regulated in oxygen-glucose deprivation (OGD)-induced HT22 cells and mouse middle cerebral artery occlusion (MCAO) model. circ-HECTD1 knockdown relieved OGD-caused neuronal cell death in vitro. Simultaneously, circ-HECTD1 knockdown improved cerebral infarction volume and neuronal apoptosis in MCAO mice. circ-HECTD1 was able to negatively regulate the expression of miR-133b, and TRAF3 is one of the targets of miR-133b. Upregulation of miR-133b inhibited the expression of TRAF3 in OGD-stimulated cells, whereas circ-HECTD1 upregulation reversed this effect. Furthermore, upregulation of miR-133 was able to inhibit OGD-caused cell apoptosis and NF-κB activation, whereas upregulation of circ-HECTD1 attenuated these effects of miR-133b mimics. SIGNIFICANCE: Taken together, circ-HECTD1 knockdown inhibited the expression of TRAF3 by targeting miR-133b, thereby attenuating neuronal injury caused by cerebral ischemia.


Assuntos
/genética , MicroRNAs/genética , Neurônios/patologia , RNA Circular/genética , Fator 3 Associado a Receptor de TNF/genética , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose , Glicemia/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Cerebral Média/patologia , Neuroproteção , Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
8.
Gut ; 70(2): 276-284, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32690600

RESUMO

OBJECTIVE: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in faeces of patients with COVID-19, the activity and infectivity of the virus in the GI tract during disease course is largely unknown. We investigated temporal transcriptional activity of SARS-CoV-2 and its association with longitudinal faecal microbiome alterations in patients with COVID-19. DESIGN: We performed RNA shotgun metagenomics sequencing on serial faecal viral extractions from 15 hospitalised patients with COVID-19. Sequencing coverage of the SARS-CoV-2 genome was quantified. We assessed faecal microbiome composition and microbiome functionality in association with signatures of faecal SARS-CoV-2 infectivity. RESULTS: Seven (46.7%) of 15 patients with COVID-19 had stool positivity for SARS-CoV-2 by viral RNA metagenomic sequencing. Even in the absence of GI manifestations, all seven patients showed strikingly higher coverage (p=0.0261) and density (p=0.0094) of the 3' vs 5' end of SARS-CoV-2 genome in their faecal viral metagenome profile. Faecal viral metagenome of three patients continued to display active viral infection signature (higher 3' vs 5' end coverage) up to 6 days after clearance of SARS-CoV-2 from respiratory samples. Faecal samples with signature of high SARS-CoV-2 infectivity had higher abundances of bacterial species Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, Morganella morganii, and higher functional capacity for nucleotide de novo biosynthesis, amino acid biosynthesis and glycolysis, whereas faecal samples with signature of low-to-none SARS-CoV-2 infectivity had higher abundances of short-chain fatty acid producing bacteria, Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium 1_1_57FAA. CONCLUSION: This pilot study provides evidence for active and prolonged 'quiescent' GI infection even in the absence of GI manifestations and after recovery from respiratory infection of SARS-CoV-2. Gut microbiota of patients with active SARS-CoV-2 GI infection was characterised by enrichment of opportunistic pathogens, loss of salutary bacteria and increased functional capacity for nucleotide and amino acid biosynthesis and carbohydrate metabolism.


Assuntos
/complicações , Fezes/microbiologia , Fezes/virologia , /isolamento & purificação , Adulto , Idoso , Feminino , Microbioma Gastrointestinal , Hospitalização , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
9.
Biochem Biophys Res Commun ; 534: 914-920, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187643

RESUMO

Osmotic stress is one of the main stresses seriously affects the growth and development of plants. Hydrogen sulfide (H2S) emerges as the third gaseous signal molecule to involve in the complex network of signaling events. Phospholipase Dδ (PLDδ), as signal enzyme, responds to many biotic or abiotic stress responses. In this study, the functions and the relationship of PLDδ and H2S in stomatal closure induced by osmotic stress were explored. Using the seedlings of ecotype (WT), PLDδ deficient mutant (pldδ), L-cysteine desulfhydrase (LCD) deficient mutant (lcd) and pldδlcd double mutant as materials, the Real-time quantitative PCR (RT-qPCR) and the stomatal aperture were analyzed. Osmotic stress induced the expressions of PLDδ and LCD. The H2S content and the activities of PLD and LCD ascended in WT under osmotic stress. The phenotypes of pldδ, lcd and pldδlcd were more sensitive to osmotic stress than WT. Compared with pldδ, the stomatal of lcd showed lower sensitivity to osmotic stress, and the stomatal aperture of pldδlcd was similar to that of lcd. Simultaneous application of PA and NaHS resulted in tighter closure of stomatal than application of either PA or NaHS alone. These results suggested that osmotic stress-triggered stomatal closure requires PLDδ and H2S in A. thaliana. LCD acted downstream of PLDδ to regulate the stomatal closure induced by osmotic stress.

10.
Dev Comp Immunol ; 115: 103895, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33065202

RESUMO

Interleukin (IL) -2, a member of the four α-helical cytokine family, has broad regulatory roles in mediating vertebrate immune response. In mammals, IL-2 and IL-15 share a common evolutionary origin and possess overlapping but distinct functions. IL-2 and IL-15 bind to distinct private receptors for signaling. However, fish appear to possess a single IL-15Rα like gene whilst lack additional gene(s) coding for IL-2Rα. Whether the IL-2 and IL-15 interact with the same receptor in fish and how their functions and receptors have evolved are not fully understood. In this study, homologues of IL-2 and IL-2/15Rα were sequenced from a teleost species, grass carp (Ctenopharyngodon idella), and the crystal structure of IL-2 was determined. The grass carp IL-2 (termed CiIL-2) displayed a classical cytokine structure consisting of four helical bundles which shares significant similarity with human IL-15. The key amino acids involved in the interface interaction of IL-2/15 and their receptors are well conserved. The CiIL-2 has been shown to bind the IL-2/15Rα like homologue with an affinity of 2.45 nM, supporting the notion that fish IL-2 and IL-15 may share a single common private receptor for exerting functions. Syntenic analysis suggests that the IL-2Rα of tetrapods has evolved from an IL-15Rα like homologue, in which a second sushi domain (D2) in the extracellular region has been duplicated to facilitate the specific interaction with IL-2. The CiIL-2 was predominantly expressed in lymphocyte-rich tissues such as the spleen, kidney and thymus, and could be induced by PHA and IL-21. In vivo challenge with grass carp reovirus and Flavobacterium columnare also resulted in upregulation of CiIL-2 expression. The recombinant CiIL-2 was shown to activate expression of STAT5b, IL-1ß, IL-22 and IFN-γ, and to promote the proliferation of the primary cell cultures from head kidney leucocytes. Our results shed lights into the co-evolution of IL-2 and its private receptor, and the functional divergence of IL-2 and IL-15 during evolution.

11.
Mol Immunol ; 129: 63-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33229072

RESUMO

Cnaphalocrocis medinalis granulovirus (CnmeGV) is a potential microbial agent against the rice leaffolder. Innate immunity is essential for insects to survive pathogenic infection. Therefore, to clarify the immune response of Cnaphalocrocis medinalis to the viral colonization, the gene expression profile of C. medinalis infected with CnmeGV was constructed by RNA-seq. A total of 8,503 differentially expressed genes (DEGs) were found including 5,304 up-regulated and 3,199 down-regulated unigenes. Gene enrichment analysis indicated that these DEGs were mainly linked to protein synthesis and metabolic process as well as ribosome and virus-infection pathways. Specifically, a significantly up-regulated PiggyBac-like transposon gene was identified suggested that the enhancement of transposon activity is related to host immunity. Further, the DEGs encoding oxidative stress related genes were identified and validated by RT-qPCR. Overall, 9 antioxidant enzyme genes and 4 antioxidant protein genes were up-regulated, and the extensive glutathione S-transferase genes were down-regulated. Our results provide a basis for understanding the molecular mechanisms of baculovirus action and oxidative stress response in C. medinalis and other insects.

12.
Protein Expr Purif ; 179: 105801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33248225

RESUMO

While the discovery of antibiotics has made a huge contribution to medicine, bacteria that are resistant to many antibiotics pose new challenges to medicine. Antimicrobial peptides (AMPs), a new kind of antibiotics, have attracted people's attention because they are not prone to drug resistance. In this study, glutathione transferase (GST) was used as a fusion partner to recombinantly expressed rat lung surfactant protein B precursor (proSP-B) in E. coli pLySs. Cck-8 evaluated the cytotoxicity of the fusion protein and calculated its 50% inhibitory concentration (IC50). The purified peptides showed broad-spectrum antibacterial activity using filter paper method and MIC, and propidium iodide (PI) was used to explore the antibacterial mechanism against Staphylococcus aureus. In addition, the pEGFP-N2-proSP-B vector was constructed to explore the localization of proSP-B in CCL-149 cells. We found that proSP-B has obvious antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and fungi, and has broad-spectrum antibacterial activity. Besides, proSP-B fusion protein has low toxicity and can change the permeability of Staphylococcus aureus cell membrane to realize its antibacterial. For these reasons, proSP-B can be used as a potential natural antibacterial drug.

13.
Gastroenterology ; 160(1): 317-330.e11, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33011176

RESUMO

BACKGROUND & AIMS: Proteus spp, Gram-negative facultative anaerobic bacilli, have recently been associated with Crohn's disease (CD) recurrence after intestinal resection. We investigated the genomic and functional role of Proteus as a gut pathogen in CD. METHODS: Proteus spp abundance was assessed by ure gene-specific polymerase chain in 54 pairs of fecal samples and 101 intestinal biopsies from patients with CD and healthy controls. The adherence, invasion, and intracellular presence of 2 distinct isolates of Proteus mirabilis in epithelial cells were evaluated using immunofluorescence and electron microscopy. Intracellular gene expression profiles and regulated pathways were analyzed by RNA sequencing and KEGG pathway analysis. Biologic functions of 2 isolates of P mirabilis were determined by in vitro cell culture, and in vivo using conventional mice and germ-free mice. RESULTS: Proteus spp were significantly more prevalent and abundant in fecal samples and colonic tissue of patients with CD than controls. A greater abundance of the genus Fusobacterium and a lesser abundance of the genus Faecalibacterium were seen in patients with CD with a high Proteus spp abundance. All 24 Proteus monoclones isolated from patients with CD belonged to members of P mirabilis lineages and 2 isolates, recovered from stool or mucosa, were used in further studies. Mice gavaged with either P mirabilis strain had more severe colonic inflammation. Co-culture of the isolates with epithelial cell lines showed bacterial adherence, invasion, increased production of pro-inflammatory cytokines IL-18 and IL-1α, and cell necrosis. Both isolates induced key pro-inflammatory pathways, including NOD-like receptor signaling, Jak-STAT signaling, and MAPK signaling, and induced pro-inflammatory genes and activated inflammation-related pathways in gnotobiotic mice. CONCLUSIONS: P mirabilis in the gut is associated with CD and can induce inflammation in cells and animal models of colitis. P mirabilis can act as a pathobiont and play a crucial role in the pathogenesis of CD.

14.
Cancer Manag Res ; 12: 12215-12223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33273858

RESUMO

Introduction: Immuno-checkpoint inhibitors (ICIs) in advanced gastric cancer either as monotherapy or in combining strategies are rapidly evolving but still in early phase. Various efforts have been made to provide insights into regulating immune checkpoint molecule programmed cell death ligand-1 (PD-L1) expression to improve ICIs efficacy. The aim of this study was to investigate the effect and potential mechanism of miR-200c nanoparticles combined with radiotherapy in gastric cancer cells. Methods: We prepared miR-200c-loaded nanoparticles (miR-200c NPs) to achieve targeted delivery of miR-200c to AGS cells. The roles of miR-200c NPs and radiotherapy in regulating the viability of AGS cells were assessed by CCK-8 toxicity test and Annexin V-FITC/PI apoptosis kit. Flow cytometry was used to analyze expression of PD-L1 and CD44 on the surface of AGS cells treated by miR-200c NPs and/or ionizing radiation. Enzyme-linked immunosorbent assay (ELISA) was used to test the level of transforming growth factor-beta 1 (TGF-ß1) secreted by AGS cells. The cooperation mechanism between miR-200c NPs and radiotherapy was also explored in vitro. Results: Compared with naked miR-200c mimics, miR-200c NPs significantly downregulated PD-L1 expression of gastric cancer cells. The combination of miR-200c NPs and radiotherapy showed significantly synergistic inhibitory effect on gastric cancer cells by inhibiting immune escape mediated by PD-L1, reversing EMT phenotype as well as abrogating cancer stem cells (CSCs)-associated properties of tumor cells. Conclusion: MiR-200c NPs sensitized gastric cancer cells to radiotherapy by regulating PD-L1 expression and EMT.

15.
Medicine (Baltimore) ; 99(52): e23453, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33350727

RESUMO

BACKGROUND: Bronchial asthma (BA) is a chronic airway inflammatory disease with reversible airflow limitation as the main clinical manifestations, such as wheezing, cough, shortness of breath, chest tightness, etc, mediated by a variety of inflammatory cells, which can be recurrent. Clinical can improve symptoms, but cannot be cured; glucocorticoid is the most important first-line medication. Clinical practice has shown that montelukast sodium combined with fluticasone in the treatment of adult BA can improve clinical efficacy and reduce adverse reactions. The purpose of this study is to systematically study the efficacy and safety of montelukast sodium combined with fluticasone in the treatment of adult BA. METHODS: The Chinese databases (CNKI, VIP, Wanfang, Chinese Biomedical Database) and English databases (PubMed, the Cochrane Library, Embase, Web of Science) were searched by computer, for the randomized controlled clinical studies of montelukast sodium combined with fluticasone in the treatment of adult BA from establishment of database to October 2020. Two researchers independently extracted the relevant data and evaluated the quality of the literatures, and used RevMan5.3 software to conduct meta-analyze of the included literatures. RESULTS: This study assessed the efficacy and safety of montelukast sodium combined with fluticasone in the treatment of adult BA through total effective rate, pulmonary function (FEV1, FVC, PEF, FEV1/FVC), and adverse reactions. CONCLUSION: This study will provide reliable evidence-based evidence for the clinical application of montelukast sodium combined with fluticasone in the treatment of adult BA. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/CKQFM.


Assuntos
Acetatos/administração & dosagem , Antiasmáticos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Asma/tratamento farmacológico , Ciclopropanos/administração & dosagem , Fluticasona/administração & dosagem , Metanálise como Assunto , Quinolinas/administração & dosagem , Projetos de Pesquisa , Sulfetos/administração & dosagem , Revisões Sistemáticas como Assunto/métodos , Acetatos/efeitos adversos , Adulto , Antiasmáticos/efeitos adversos , Anti-Inflamatórios/efeitos adversos , Ciclopropanos/efeitos adversos , Combinação de Medicamentos , Fluticasona/efeitos adversos , Humanos , Quinolinas/efeitos adversos , Sulfetos/efeitos adversos , Resultado do Tratamento
16.
Chem Asian J ; 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372714

RESUMO

The discrimination and detection of phosphate anions have attracted extensive attention due to their important roles in various biological processes. Compared with sensors to detect one individual phosphate at a time, sensor arrays are able to discriminate multiple phosphates simultaneously. In this study, we developed a rare earth ions enhanced AuNCs-based sensor array to achieve facile and rapid identification of phosphate anions (PPi, ADP and ATP). The rare earth ions (i. e., Ce3+ , Gd3+ , Tm3+ and Yb3+ ) can significantly enhance the fluorescence of AuNCs through aggregation-induced emission effect. And the subsequent addition of phosphate anions can recover the fluorescence of the AuNCs-rare earth ions assembly. Thanks to the different numbers of phosphate group and different steric hindrance effects of phosphate anions, the recovery fluorescence of AuNCs-rare earth ions assembly induced by PPi, ADP or ATP are respectively distinct. Thus the sensor array composed of AuNCs and different rare earth ions is able to distinguish those phosphate anions. Finally, the sensor array was successfully demonstrated to identify the phosphates in blind samples.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33355656

RESUMO

BACKGROUND: Skeletal muscle depletion is common in the elderly and individuals with chronic comorbidities, who have an increased risk of developing severe coronavirus disease 2019 (COVID-19), which is defined by hypoxia requiring supplemental oxygen. This study aimed to determine the association between skeletal muscle depletion and clinical outcomes in patients with severe COVID-19. METHODS: One hundred and sixteen patients with severe COVID-19 who underwent chest computed tomography (CT) scan on admission were included in this multicentre, retrospective study. Paraspinal muscle index (PMI) and radiodensity (PMD) were measured using CT images. The primary composite outcome was the occurrence of critical illness (respiratory failure requiring mechanical ventilation, shock, or intensive care unit admission) or death, and the secondary outcomes were the duration of viral shedding and pulmonary fibrosis in the early rehabilitation phase. Logistic regression and Cox proportional hazards models were employed to evaluate the associations. RESULTS: The primary composite outcome occurred in 48 (41.4%) patients, who were older and had lower PMD (both P < 0.05). Higher PMD was associated with reduced risk of critical illness or death in a fully adjusted model overall (OR per SD increment: 0.87, 95% CI: 0.80-0.95; P = 0.002) and in female patients (OR per SD increment: 0.71, 95% CI: 0.56-0.91; P = 0.006), although the effect was not statistically significant in male patients (P = 0.202). Higher PMD (HR per SD increment: 1.08, 95% CI: 1.02-1.14; P = 0.008) was associated with shorter duration of viral shedding among female survivors. However, no significant association was found between PMD and pulmonary fibrosis in the early rehabilitation phase, or between PMI and any outcome in both men and women. CONCLUSION: Higher PMD, a proxy measure of lower muscle fat deposition, was associated with a reduced risk of disease deterioration and decreased likelihood of prolonged viral shedding among female patients with severe COVID-19.

18.
Sci Transl Med ; 12(572)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268511

RESUMO

Tumor recurrence years after seemingly successful treatment of primary tumors is one of the major causes of mortality in patients with cancer. Reactivation of dormant tumor cells is largely responsible for this phenomenon. Using dormancy models of lung and ovarian cancer, we found a specific mechanism, mediated by stress and neutrophils, that may govern this process. Stress hormones cause rapid release of proinflammatory S100A8/A9 proteins by neutrophils. S100A8/A9 induce activation of myeloperoxidase, resulting in accumulation of oxidized lipids in these cells. Upon release from neutrophils, these lipids up-regulate the fibroblast growth factor pathway in tumor cells, causing tumor cell exit from the dormancy and formation of new tumor lesions. Higher serum concentrations of S100A8/A9 were associated with shorter time to recurrence in patients with lung cancer after complete tumor resection. Targeting of S100A8/A9 or ß2-adrenergic receptors abrogated stress-induced reactivation of dormant tumor cells. These observations demonstrate a mechanism linking stress and specific neutrophil activation with early recurrence in cancer.

19.
Cancer Res ; 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262126

RESUMO

Metastatic dissemination remains a significant barrier to successful therapy for melanoma. Wnt5A is a potent driver of invasion in melanoma and is believed to be secreted from the tumor microenvironment. Our data suggest that myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME) are a major source of Wnt5A and are reliant upon Wnt5A for multiple actions. Knockdown of Wnt5A specifically in the myeloid cells demonstrated a clear decrease in Wnt5A expression within the TME in vivo as well as a decrease in intratumoral MDSC and Treg. Wnt5A knockdown also decreased the immunosuppressive nature of MDSC and decreased expression of TGF-ß1 and arginase 1. In the presence of Wnt5A-depleted MDSC, tumor-infiltrating lymphocytes expressed decreased PD-1 and LAG3, suggesting a less exhausted phenotype. Myeloid-specific Wnt5A knockdown also led to decreased lung metastasis. Tumor-infiltrating MDSC from control animals showed a strong positive correlation with Treg, which was completely ablated in animals with Wnt5A-negative MDSC. Overall, our data suggest that while MDSC contribute to an immunosuppressive and less immunogenic environment, they exhibit an additional function as the major source of Wnt5A in the TME.

20.
BMC Genomics ; 21(1): 861, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272205

RESUMO

BACKGROUND: As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. RESULTS: Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 µM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves. Furthermore, the C2H2 and MYB transcription factors were predicted to be involved in the transcriptional regulation of genes that participate in secondary metabolism in stylo during Mn exposure. Interestingly, the activation of secondary metabolism-related genes probably resulted in increased levels of secondary metabolites, including total phenols, flavonoids, tannins and anthocyanidins. CONCLUSIONS: Taken together, this study reveals the roles of secondary metabolism in the adaptive responses of stylo to Mn toxicity, which is probably regulated by specific transcription factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA