Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1941, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029857

RESUMO

The accurate and automated determination of small earthquake (ML < 3.0) locations is still a challenging endeavor due to low signal-to-noise ratio in data. However, such information is critical for monitoring seismic activity and assessing potential hazards. In particular, earthquakes caused by industrial injection have become a public concern, and regulators need a solid capability for estimating small earthquakes that may trigger the action requirements for operators to follow in real time. In this study, we develop a fully convolutional network and locate earthquakes induced during oil and gas operations in Oklahoma with data from 30 network stations. The network is trained by 1,013 cataloged events (ML ≥ 3.0) as base data along with augmented data accounting for smaller events (3.0 > ML ≥ 0.5), and the output is a 3D volume of the event location probability in the Earth. The prediction results suggest that the mean epicenter errors of the testing events (ML ≥ 1.5) vary from 3.7 to 6.4 km, meeting the need of the traffic light system in Oklahoma, but smaller events (ML = 1.0, 0.5) show errors larger than 11 km. Synthetic tests suggest that the accuracy of ground truth from catalog affects the prediction results. Correct ground truth leads to a mean epicenter error of 2.0 km in predictions, but adding a mean location error of 6.3 km to ground truth causes a mean epicenter error of 4.9 km. The automated system is able to distinguish certain interfered events or events out of the monitoring zone based on the output probability estimate. It requires approximately one hundredth of a second to locate an event without the need for any velocity model or human interference.

2.
J Colloid Interface Sci ; 567: 328-338, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32065907

RESUMO

Here, we report an organometallic chemistry-assisted method for modification of zinc oxide (ZnO) nanoparticles by tin oxide (SnO2) nanoparticles, providing a novel and efficient approach for preparation of metal oxides-based heterojunction. The SnO2/ZnO heterojunctions were prepared by modification of ZnO nanoparticles with (CH3)2SnCl2 through organometallic chemistry reaction firstly, and subsequently thermal treatment in air atmosphere. The combined characterizations indicate the successful formation of ZnO/SnO2 heterojunctions with controllable surface oxygen vacancy concentrations by optimizing organometallic chemistry reactions. Most importantly, ZnO-Sn-0.75-based NO2 sensor delivers the response of 14.3 toward 0.5 ppm NO2 at 190 °C with response time of 100 s and recovery time of 101 s. It is also found that ZnO-Sn-0.75 sample exhibits better NO2 sensing performances than ZnO nanoparticles and other ZnO-Sn samples (ZnO-Sn-0.50, and ZnO-Sn-1.0). The excellent sensing performances of ZnO-Sn-0.75 are attributed to the synergistic effect n-n heterojunction and controllable surface oxygen species. The present work opens a generalized avenue for facile, cheap and mass production of transition metal oxides-based heterojunctions for various applications.

3.
J Colloid Interface Sci ; 565: 592-600, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31991287

RESUMO

Owing to the outstanding dielectric properties derived from the conjugated π-electron systems, conjugated polymers have been explored and developed in capacitive humidity sensors for a few decades. In this work, a series of composites - mesoporous silica and semiconducting polymers - MCM-41 (MCM, Mesoporous Crystalline Material)/PEDOT (poly(3,4-ethylenedioxythiophene)) were chemically obtained by in-situ polymerization at 0 °C, while the amounts of PEDOT were adjusted by different evaporation times of EDOT (3,4-ethylenedioxythiophene) in the porous MCM-41 film. Additionally, it was able to modulate both the dielectricity and porosity of the composites via this convenient approach. The obtained capacitive humidity sensors based on MCM-41/PEDOT composites exhibit much better sensing performance than their bulk counterparts, with wider humidity sensing range, higher sensitivity and much faster response speed.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31980172

RESUMO

Circadian rhythms are the endogenous oscillation of biological reactions and behaviors in most organisms on Earth. Circadian clocks are the pacemakers regulating circadian rhythms, and the transcription-translation dependent feedback loop (TTFL) model was supposed to be the sole model of circadian clocks. However, recent years have witnessed rapid progresses in the study of non-TTFL circadian clocks. The cyanobacterial circadian clock consists of three proteins (KaiA, KaiB, and KaiC), and is extensively studied as a non-TTFL circadian clock model. Although containing only three proteins, the molecular mechanism of the KaiABC circadian clock remains elusive. We recently noticed that KaiA has an auto-inhibition conformation during the oscillation, but how this auto-inhibition is regulated is unclear. Here, we started from the design of light modulated KaiAs to investigate this mechanism. We designed different KaiA constructs fused with the light modulable LOV2 protein, and used light-modulated KaiAs to regulate the phosphorylation and dephosphorylation of KaiC. Our data indicated that the N-terminal domain of KaiA is important for KaiA's reversible off/on switching during the unidirectional oscillation of the KaiABC system. This work provides an updated model to explain the molecular mechanism of the KaiABC circadian clock.

5.
Bioresour Technol ; 300: 122680, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918292

RESUMO

Magnetic biochar was usually prepared using ferrous and ferric compounds as precursor of magnetic medium. Ferrate, which could be an internal oxidative modifier, was less explored for preparing magnetic biochar. Here, a magnetic biochar was prepared through K2FeO4-promoted pyrolysis of pomelo peel for adsorption of hexavalent chromium. Oxygen-containing groups and single phase ɤ-Fe2O3 were simultaneously introduced into biochar matrix at 300 °C. The magnetic biochar exhibited 209.64 mg/g maximum adsorption capability at 45 °C, outperformed the best magnetic biochar with 142.86 mg/g maximum adsorption capability at 40 °C in the literature. Moreover, a good magnetism was obtained, facilitating separation of the magnetic biochar from aqueous solution by a magnet. The removal of hexavalent chromium was contributed to the hybrid adsorption of ɤ-Fe2O3 and biochar matrix by reduction, electrostatic interaction and complexation. This method was attractive, required neither extra modifiers nor multiple operations for preparation of highly adsorptive magnetic biochar.


Assuntos
Pirólise , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cromo , Fenômenos Magnéticos , Estresse Oxidativo
6.
J Hum Genet ; 65(3): 221-230, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31827250

RESUMO

Congenital scoliosis (CS) is a form of scoliosis caused by congenital vertebral malformations. Genetic predisposition has been demonstrated in CS. We previously reported that TBX6 loss-of-function causes CS in a compound heterozygous model; however, this model can explain only 10% of CS. Many monogenic and polygenic CS genes remain to be elucidated. In this study, we analyzed exome sequencing (ES) data of 615 Chinese CS from the Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) project. Cosegregation studies for 103 familial CS identified a novel heterozygous nonsense variant, c.2649G>A (p.Trp883Ter) in FBN1. The association between FBN1 and CS was then analyzed by extracting FBN1 variants from ES data of 574 sporadic CS and 828 controls; 30 novel variants were identified and prioritized for further analyses. A mutational burden test showed that the deleterious FBN1 variants were significantly enriched in CS subjects (OR = 3.9, P = 0.03 by Fisher's exact test). One missense variant, c.2613A>C (p.Leu871Phe) was recurrent in two unrelated CS subjects, and in vitro functional experiments for the variant suggest that FBN1 may contribute to CS by upregulating the transforming growth factor beta (TGF-ß) signaling. Our study expanded the phenotypic spectrum of FBN1, and provided nove insights into the genetic etiology of CS.

7.
Mol Genet Genomic Med ; 8(1): e1023, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31774634

RESUMO

BACKGROUND: The molecular and genetic mechanisms by which different single nucleotide variant alleles in specific genes, or at the same genetic locus, cause distinct disease phenotypes often remain unclear. Allelic truncating mutations of FBN1 could cause either classical Marfan syndrome (MFS) or a more complicated phenotype associated with Marfanoid-progeroid-lipodystrophy syndrome (MPLS). METHODS: We investigated a small cohort, encompassing two classical MFS and one MPLS subjects from China, whose clinical presentation included scoliosis potentially requiring surgical intervention. Targeted next generation sequencing was performed on all the participants. We analyzed the molecular diagnosis, clinical features, and the potential molecular mechanism involved in the MPLS subject in our cohort. RESULTS: We report a novel de novo FBN1 mutation for the first Chinese subject with MPLS, a more complicated fibrillinopathy, and two subjects with more classical MFS. We further predict that the MPLS truncating mutation, and others previously reported, is prone to escape the nonsense-mediated decay (NMD), while MFS mutations are predicted to be subjected to NMD. Also, the MPLS mutation occurs within the glucogenic hormone asprosin domain of FBN1. In vitro experiments showed that the single MPLS mutation p.Glu2759Cysfs*9 appears to perturb proper FBN1 protein aggregation as compared with the classical MFS mutation p.Tyr2596Thrfs*86. Both mutations appear to upregulate SMAD2 phosphorylation in vitro. CONCLUSION: We provide direct evidence that a dominant-negative interaction of FBN1 potentially explains the complex MPLS phenotypes through genetic and functional analysis. Our study expands the mutation spectrum of FBN1 and highlights the potential molecular mechanism for MPLS.

8.
Trop Anim Health Prod ; 52(1): 425-433, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31713705

RESUMO

This study investigated the effects of enzymatic hydrolysate of cottonseed protein (EHCP) supplementation on the growth performance and intestinal health of nursery pigs in Thailand. A total of 180 newly weaned piglets were randomly allocated to 3 groups with 6 replicates in each group and 10 piglets per replicate. Nursery pigs were fed three diets containing 0, 1%, and 1.5% EHCP for 28-63 days of age. The results indicated that 1% EHCP supplementation increased average daily feed intake (ADFI) and average daily gain (ADG) and decreased feed conversion rate (FCR) in the numerical, suggesting that appropriate EHCP supplementation could numerically improve growth performance of nursery pigs in Thailand. Moreover, 1% EHCP supplementation significantly decreased intestinal crypt depth and diarrhea incidence and increased intestinal villus height to crypt depth ratio and fecal consistency, suggesting that optimum EHCP supplementation could improve intestinal morphology and decreased diarrhea incidence of nursery pigs in Thailand. Furthermore, 1% EHCP supplementation significantly improved intestinal glutathione (GSH) level and superoxide dismutase (SOD) activity and indicated that optimal EHCP supplementation could improve intestinal antioxidant capacity of nursery pigs in Thailand. Optimum EHCP supplementation numerically increased growth, significantly decreased diarrhea incidence, significantly improved intestinal morphology and antioxidant capacity of nursery pig in Thailand.

9.
Trop Anim Health Prod ; 52(1): 435, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31848831

RESUMO

In the originally published article, the sentence "It was prepared from carefully selected soybean meal and was processed by enzymatic hydrolysis into small peptide." in the section Materials and methods was incorrect.

10.
ACS Sens ; 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31793289

RESUMO

The analysis of exhaled human breath has great significance for early noninvasive diagnosis. Poor selectivity and strong humidity are two bottlenecks for the application of gas sensors to exhaled breath analysis. In this work, we utilized the adsorption, dissolution, ionization, and migration processes of ammonia in wet nonconjugated hydrophilic polymers to realize effective ammonia detection. The indispensable high-humidity atmosphere of exhaled breath was turned into a favorable condition for ammonia sensing. Nonconjugated polymer sensors can distinguish ammonia from most other gases because of its extremely high solubility and good ionization ability. A sensor based on poly(vinyl pyrrolidone) (PVP) could detect 0.5 ppm ammonia with an extremely high selectivity. The ammonia-sensing mechanism was thoroughly investigated by complex impedance plots (CIPs) and a quartz crystal microbalance (QCM) measurement. Finally, the potential of the PVP sensor for ammonia detection in exhaled breath was evaluated in simulated environments.

11.
Clin Exp Hypertens ; : 1-10, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31851528

RESUMO

Background: Arterial pressure volume index (API) and arterial velocity pulse index (AVI) contribute to the development of vascular damage and cardiovascular disease. However, the relationship between common API/AVI trajectories and cardiovascular outcomes in hypertensive patients with heart failure with preserved ejection fraction (HFpEF) is unknown.Methods: A total of 488 consecutive hypertensive patients with HFpEF who repeatedly underwent API/AVI measurements were prospectively examined. We then applied API/AVI measurements into actual clinical practice. Latent mixture modeling was performed to identify API/AVI trajectories. Hazards ratios (HRs) were measured using Cox proportional hazard models.Results: We identified four distinct API/AVI trajectory patterns: low (7.6%), moderate (43.8%), high (28.9%), and very high (19.7%). Compared with the low group, higher API trajectories were associated with increased risk of total cardiovascular events (high group, adjusted HR: 2.91, 95% confidence interval [CI]: 1.97-4.26; very high group, adjusted HR: 2.46, 95%CI: 1.18-3.79). Consistently, higher AVI trajectories were also associated with a higher risk of total cardiovascular events (high group, adjusted HR: 2.58, 95%CI: 1.23-5.47; very high group, adjusted HR: 3.12, 95%CI: 1.83-6.08), compared with the low trajectory group.Conclusion: High API/AVI trajectories are strong predictors of cardiovascular risk in hypertensive patients with HFpEF. Among these patients, measuring API/AVI may improve risk stratification and provide additional information to tailor treatment strategies.

12.
BMC Bioinformatics ; 20(Suppl 18): 575, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31760945

RESUMO

BACKGROUND: Influenza is an infectious respiratory disease that can cause serious public health hazard. Due to its huge threat to the society, precise real-time forecasting of influenza outbreaks is of great value to our public. RESULTS: In this paper, we propose a new deep neural network structure that forecasts a real-time influenza-like illness rate (ILI%) in Guangzhou, China. Long short-term memory (LSTM) neural networks is applied to precisely forecast accurateness due to the long-term attribute and diversity of influenza epidemic data. We devise a multi-channel LSTM neural network that can draw multiple information from different types of inputs. We also add attention mechanism to improve forecasting accuracy. By using this structure, we are able to deal with relationships between multiple inputs more appropriately. Our model fully consider the information in the data set, targetedly solving practical problems of the Guangzhou influenza epidemic forecasting. CONCLUSION: We assess the performance of our model by comparing it with different neural network structures and other state-of-the-art methods. The experimental results indicate that our model has strong competitiveness and can provide effective real-time influenza epidemic forecasting.

13.
BMC Bioinformatics ; 20(Suppl 18): 571, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31760946

RESUMO

BACKGROUND: Collective cell migration is a significant and complex phenomenon that affects many basic biological processes. The coordination between leader cell and follower cell affects the rate of collective cell migration. However, there are still very few papers on the impacts of the stimulus signal released by the leader on the follower. Tracking cell movement using 3D time-lapse microscopy images provides an unprecedented opportunity to systematically study and analyze collective cell migration. RESULTS: Recently, deep reinforcement learning algorithms have become very popular. In our paper, we also use this method to train the number of cells and control signals. By experimenting with single-follower cell and multi-follower cells, it is concluded that the number of stimulation signals is proportional to the rate of collective movement of the cells. Such research provides a more diverse approach and approach to studying biological problems. CONCLUSION: Traditional research methods are always based on real-life scenarios, but as the number of cells grows exponentially, the research process is too time consuming. Agent-based modeling is a robust framework that approximates cells to isotropic, elastic, and sticky objects. In this paper, an agent-based modeling framework is used to establish a simulation platform for simulating collective cell migration. The goal of the platform is to build a biomimetic environment to demonstrate the importance of stimuli between the leading and following cells.

14.
Curr Mol Med ; 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31702499

RESUMO

AIMS: To confirm the effects of hydrogen-rich water on apoptosis via the PI3K/AKT signaling pathway in rats with myocardial ischemia-reperfusion injury (MIRI). BACKGROUND: 5 signaling pathways involved in the effect of hydrogen-rich water on myocardial ischemia-reperfusion injury (MIRI) were analyzed. OBJECTIVE: The effects of hydrogen-rich water on apoptosis via the PI3K/AKT signaling pathway were studied in rats with myocardial ischemia-reperfusion injury (MIRI). METHOD: Sixty rats were divided randomly into a hydrogen-rich water group and control group. The hearts were removed and fixed in a Langendorff device. The control group was perfused with a K-R solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two groups were then divided randomly into the pre-ischemic period, ischemic period, and reperfusion period groups, 10 rats per group, which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim, and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC), and Western blotting. RESULT: The PI3K/AKT signaling pathway was significantly activated, while FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in the hydrogen-rich water group compared with those in the pre-ischemic and ischemic phase groups. PI3K, AKT and p-AKT mRNA and protein expression levels were increased, while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased in the hydrogen-water group compared with those in the control group in the ischemia-reperfusion phase (P<0.05). CONCLUSION: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.

15.
J Biomol Struct Dyn ; : 1-12, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31709918

RESUMO

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are abundant in all species. They play critical roles in many cellular processes, including transcription/translation regulation, cell cycle regulation, mRNA processing, scaffolding, apoptosis, and assembly of large protein complexes or membraneless organelles. IDPs/IDRs usually recognize their biological targets via short recognition segments. Although the recognition segments are enriched in hydrophobic residues and IDPs/IDRs rely on hydrophobic contacts to interact with their targets, charged residues are also frequently observed within the recognition segments, particularly in those forming α-helix in the complex structure. By summarizing recent studies, this review aims to present the roles of electrostatic interactions played in the molecular recognition processes of IDPs/IDRs. In particular, we discuss how electrostatic interactions modulate the molecular recognition mechanisms and how charge patterning modulates the functions of IDPs/IDRs. Roles of electrostatic interactions in liquid-liquid phase separation are also discussed.Communicated by Ramaswamy H. Sarma.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31675317

RESUMO

Image-to-image translation tasks have been widely investigated with Generative Adversarial Networks (GANs). However, existing approaches are mostly designed in an unsupervised manner while little attention has been paid to domain information within unpaired data. In this paper, we treat domain information as explicit supervision and design an unpaired image-to-image translation framework, Domain-supervised GAN (DosGAN), which takes the first step towards the exploration of explicit domain supervision. In contrast to representing domain characteristics using different generators or domain codes, we pre-train a classification network to explicitly classify the domain of an image. After pre-training, this network is used to extract the domain-specific features of each image. Such features, together with the domain-independent features extracted by another encoder (shared across different domains), are used to generate image in target domain. Extensive experiments on multiple facial attribute translation, multiple identity translation, multiple season translation and conditional edges-to-shoes/handbags demonstrate the effectiveness of our method. In addition, we can transfer the domain-specific feature extractor obtained on the Facescrub dataset with domain supervision information to unseen domains, such as faces in the CelebA dataset. We also succeed in achieving conditional translation with any two images in CelebA, while previous models like StarGAN cannot handle this task.

17.
Front Microbiol ; 10: 2247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632369

RESUMO

A large number of microorganisms colonize the intestines of animals. The gut microbiota plays an important role in nutrient metabolism and affects a number of physiological mechanisms in the host. Studies have shown that seasonal changes occur in the intestinal microbes of mammals that hibernate seasonally. However, these studies only focused on ground squirrels and bears. It remains unclear how hibernation might affect the intestinal microbes of bats. In this study, we measured microbial diversity and composition in the gut of Rhinolophus ferrumequinum in different periods (early spring, early summer, late summer, torpor, and interbout arousal) using 16S ribosomal RNA gene amplicon sequencing and PICRUSt to predict functional profiles. We found seasonal changes in the diversity and composition of the gut microbes in R. ferrumequinum. The diversity of gut microbiota was highest in the late summer and lowest in the early summer. The relative abundance of Proteobacteria was highest in the early summer and significantly lower in other periods. The relative abundance of Firmicutes was lowest in the early summer and significantly increased in the late summer, followed by a significant decrease in the early winter and early spring. The relative abundance of Tenericutes was significantly higher in the early spring compared with other periods. The results of functional prediction by PICRUSt showed seasonal variations in the relative abundance of metabolism-related pathways, including lipid metabolism, carbohydrate metabolism, and energy metabolism. Functional categories for carbohydrate metabolism had significantly lower relative abundance in early winter-torpor compared with late summer, while those associated with lipid metabolism had significantly higher relative abundance in the early winter compared with late summer. Overall, our results show that seasonal physiological changes associated with hibernation alter the gut microbial community of R. ferrumequinum. Hibernation may also alter the metabolic function of intestinal microbes, possibly by converting the gut microflora from carbohydrate-related to lipid-related functional categories. This study deepens our understanding of the symbiosis between hibernating mammals and gut microbes.

18.
Bioinformatics ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584616

RESUMO

MOTIVATION: Multiple Longest Common Subsequence (MLCS) problem is searching all longest common subsequences of multiple character sequences. It appears in many fields such as data mining, DNA alignment, bioinformatics, text editing and so on. With the increasing of sequence length and number of sequences, the existing dynamic programming algorithms and the dominant point based algorithms become ineffective and inefficient, especially for large-scale MLCS problems. RESULTS: In this paper, by considering the characteristics of DNA sequences with many consecutively repeated characters, we first design a character merging scheme which merges the consecutively repeated characters in the sequences. As a result, it shortens the length of sequences considered and saves the space of storing all sequences. To further reduce the space and time costs, we construct a Weighted Directed Acyclic Graph (WDAG) which is much smaller than widely used DAG for MLCS problems. Based on these techniques, we propose a fast and memory efficient algorithm for MLCS problems. Finally, the experiments are conducted and the proposed algorithm is compared with several state-of-the art algorithms. The experimental results show that the proposed algorithm performs better than the compared state-of-the art algorithms in both time and space costs.

19.
Biophys J ; 117(7): 1301-1310, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521329

RESUMO

CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.

20.
Front Zool ; 16: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528181

RESUMO

Background: Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. Results: A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species. Conclusions: The variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA