Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(7): 3784-3788, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32037429

RESUMO

This communication uses electrochemical quartz crystal microbalance (EQCM) in combination with the potentiostatic method to study the in situ exchange mechanism for dye molecules and cations on the nano-film surface under a constant potential. The relationship between dye molecule desorption mass and charge was analyzed. A theoretical model was established to obtain the important parameters of cation exchange number and apparent valence electron number during dye desorption, and the microscopic desorption mechanism of the dye is further revealed.

2.
Biomed Mater ; 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066131

RESUMO

The present study aimed to evaluate the mechanical and degradative properties of poly(L-co-D,L-lactic acid)/silicate bioactive glass fibers (PLDLA/SGFs) composite pins in vivo. Both PLDLA and PLDLA/SGFs pins were inserted into the erector spinae muscles and femurs of beagle dogs and were harvested 6, 12, 16, 26, 52, 78, and 104 weeks after insertion. Bone formation around the pins was evaluated by micro-computed tomography. Mechanical properties were measured by the shear strength test. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) were used to assess the degradation of these materials. The surface and cross-sectional morphology of both pins were observed using a scanning electron microscope. The experimental data demonstrated the improved bone formation before 52 weeks due to the influence of the bioactive glass fibers. PLDLA/SGFs composite pins had higher initial shear strength and were relatively stable for at least 26 weeks. The addition of bioactive glass fibers accelerated the degradation rate of the composite pins. Thus, PLDLA/SGFs composite pins have promising potential for bone fixation applications.

3.
J Periodontol ; 2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983062

RESUMO

BACKGROUND: Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-ß superfamily, has recently been suggested as an anti-aging factor that declines with age in the bloodstream, and restoration of the youthful level by administration of its recombinant protein could reverse age-related dysfunctions. However, its effects on titanium implant osseointegration and mandibular bone during aging remain unknown. METHODS: Two-month-old and 18-month-old C57BL male mice were given daily intraperitoneal injections of recombinant GDF11 (rGDF11) or vehicle for 6 weeks. Experimental titanium implants were inserted into femurs on the fourth week. Inhibition of GDF11 function was achieved by GDF11 antibody. Implant-bearing femurs were subjected to histomorphometric analysis and biomechanical evaluation. Mandibles were scanned with micro-CT and decalcified for histological measurements. RESULTS: In both young adult and aged mice, supraphysiologic GDF11 leads to a significantly decreased bone-to-implant contact ratio (BIC) and peri-implant bone volume/total volume (BV/TV) at the histologic level and reduced resistance at the biomechanical level, indicating weakened implant fixation. Moreover, rGDF11 administration resulted in less trabecular bone volume and thinner cortical thickness in the mandible, which was further compromised in the old animals. In contrast, inhibition of GDF11 improved peri-implant bone healing in old mice. CONCLUSIONS: Rather than functioning as a rejuvenating factor, exogenous GDF11 negatively affects not only titanium implant healing but also mandibular bone in both young and old mice. In contrast, neutralization of endogenous GDF11 has positive effects on implant fixation in aged mice.

4.
Mol Plant ; 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31838037

RESUMO

The rubber tree, Hevea brasiliensis, produces natural rubber that serves as an essential industrial raw material. Here, we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing (SMRT) and Hi-C technologies to anchor the ∼1.47-Gb genome assembly into 18 pseudochromosomes. The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution, since the common paleopolyploid event occurred before the split of Hevea and Manihot. We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years, leading to the massive expansion by ∼65.88% (∼970 Mbp) of the whole rubber tree genome since the divergence from Manihot. We identify large-scale expansion of genes associated with whole rubber biosynthesis processes, such as basal metabolic processes, ethylene biosynthesis, and the activation of polysaccharide and glycoprotein lectin, which are important properties for latex production. A map of genomic variation between the cultivated and wild rubber trees was obtained, which contains ∼15.7 million high-quality single-nucleotide polymorphisms. We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree, some of which are involved in rubber biosynthesis. This genome assembly represents key resources for future rubber tree research and breeding, providing novel targets for improving plant biotic and abiotic tolerance and rubber production.

5.
Sci Rep ; 9(1): 17256, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754222

RESUMO

Cancer is a major cause of death worldwide, and an early diagnosis is required for a favorable prognosis. Histological examination is the gold standard for cancer identification; however, large amount of inter-observer variability exists in histological diagnosis. Numerous studies have shown cancer genesis is accompanied by an accumulation of harmful mutations, potentiating the identification of cancer based on genomic information. We have proposed a method, GDL (genome deep learning), to study the relationship between genomic variations and traits based on deep neural networks. We analyzed 6,083 samples' WES (Whole Exon Sequencing) mutations files from 12 cancer types obtained from the TCGA (The Cancer Genome Atlas) and 1,991 healthy samples' WES data from the 1000 Genomes project. We constructed 12 specific models to distinguish between certain type of cancer and healthy tissues, a total-specific model that can identify healthy and cancer tissues, and a mixture model to distinguish between all 12 types of cancer based on GDL. We demonstrate that the accuracy of specific, mixture and total specific model are 97.47%, 70.08% and 94.70% for cancer identification. We developed an efficient method for the identification of cancer based on genomic information that offers a new direction for disease diagnosis.

6.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(5): 318-321, 2019 Sep 30.
Artigo em Chinês | MEDLINE | ID: mdl-31625325

RESUMO

In order to diagnose and evaluate the human spinal lesions through the paravertebral muscles, a paravertebral muscle monitoring system based on surface EMG signals was designed. The system used surface mount electrodes to obtain the surface myoelectric signal (sEMG) of paravertebral muscle. The signal was filtered and amplified by the conditioning circuit. The signal was collected by the microcontroller NRF52832 and was sent to the mobile APP. After the signal was preprocessed by the wavelet threshold denoising algorithm in APP, the time and frequency characteristics of the sEMG signal reflecting the functional state of the muscle were extracted. The calculated characteristic parameters was displayed in real time in the application interface. The experimental results show that the system meets the design requirements in analog signal acquisition, digital processing of signals and calculation of characteristic parameters. The system has certain application value.


Assuntos
Algoritmos , Computadores , Eletromiografia , Eletrodos , Eletromiografia/instrumentação , Humanos , Monitorização Fisiológica , Músculo Esquelético , Processamento de Sinais Assistido por Computador
7.
Chaos ; 29(7): 073110, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370423

RESUMO

Effects of a low-pass active filter (LPAF) on the transition processes from oscillation quenching to asymmetrical oscillation are explored for diffusively coupled oscillators. The low-pass filter part and the active part of LPAF exhibit different effects on the dynamics of these coupled oscillators. With the amplifying active part only, LPAF keeps the coupled oscillators staying in a nontrivial amplitude death (NTAD) and oscillation state. However, the additional filter is beneficial to induce a transition from a symmetrical oscillation death to an asymmetrical oscillation death and then to an asymmetrical oscillation state which is oscillating with different amplitudes for two oscillators. Asymmetrical oscillation state is coexisting with a synchronous oscillation state for properly presented parameters. With the attenuating active part only, LPAF keeps the coupled oscillators in rich oscillation quenching states such as amplitude death (AD), symmetrical oscillation death (OD), and NTAD. The additional filter tends to enlarge the AD domains but to shrink the symmetrical OD domains by increasing the areas of the coexistence of the oscillation state and the symmetrical OD state. The stronger filter effects enlarge the basin of the symmetrical OD state which is coexisting with the synchronous oscillation state. Moreover, the effects of the filter are general in globally coupled oscillators. Our results are important for understanding and controlling the multistability of coupled systems.

8.
Hum Immunol ; 80(10): 863-870, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31262519

RESUMO

Regulatory B (Breg) cells are a special subset of immunoregulatory cells with unique phenotypes and functions. In this study, human CD19+CD25high Breg cells were purified from human peripheral blood. Based on the coculture system of Breg cells and CD4+ T cells in vitro, Breg cells were found to promote the increase in regulatory T (Treg) cells while decreasing the number of Th17 cells. Breg cells regulate Treg cells through two processes: cell-cell contact and cytokines. TGF-ßsRII, a blocker of transforming growth factor-ß (TGF-ß), can attenuate the effects of Treg elevation, suggesting that TGF-ß is the main cytokine, while Breg cells rather than interleukin-10 (IL-10) regulate the differentiation of Treg cells. However, Th17 cells were mainly regulated by cytokines, without an obvious regulatory effect on cell-cell contacts. Breg cells may regulate Th17 cells by a pathway independent of TGF-ß and IL-6. The coculture of Breg cells and CD4+ T cells led to changes in the cytokine spectrum, which included significant increases in IL-4, IL-6 and IL-10 but not obvious changes in IL-2, IFN-γ and TNF. The inhibitory effect of Breg cells was weakened by blocking cell-cell contacts in cultures separated with the Transwell chamber because IL-10 decreased while IL-6 increased when compared with cocultured Breg and CD4+ T cells. When the IL-10 inhibitor IL-10sRα was added, IL-6 and TNF levels significantly increased, while treatment with the TGF-ß inhibitor TGF-ßsRII did not result in similar changes, suggesting that IL-10 is an important molecule to inhibit the proinflammatory factors IL-6 and TNF in this culture system.

9.
J Psychiatr Res ; 115: 165-175, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31150948

RESUMO

Bipolar disorder (BPD) is a severe mental illness characterized by fluctuations in mood states, behaviors and energy levels. Growing evidence suggests that genes associated with specific illnesses tend to interact together and encode a tight protein-protein interaction (PPI) network, providing valuable information for understanding their pathogenesis. To gain insights into the genetic and physiological foundation of BPD, we conduct the physical PPI analysis of 184 BPD risk genes distilled from genome-wide association studies and exome sequencing studies. We have identified several hub genes (CAMK2A, HSP90AA1 and PLCG1) among those risk genes, and observed significant enrichment of the BPD risk genes in certain pathways such as calcium signaling, oxytocin signaling and circadian entrainment. Furthermore, while none of the 184 genetic risk genes are "well established" BPD drug targets, our PPI analysis showed that αCaMKII (encoded by CAMK2A) had direct physical PPIs with targets (HRH1, SCN5A and CACNA1E) of clinically used anti-manic BPD drugs, such as carbamazepine. We thus speculated that αCaMKII might be involved in the cellular pharmacological actions of those drugs. Using cultured rat primary cortical neurons, we found that carbamazepine treatment induced phosphorylation of αCaMKII in dose-dependent manners. Intriguingly, previous study showed that CAMK2A heterozygous knockout (CAMK2A+/-) mice exhibited infradian oscillation of locomotor activities that can be rescued by carbamazepine. Our data, in combination with previous studies, provide convergent evidence for the involvement of CAMK2A in the risk of BPD.

10.
Cell Prolif ; 52(4): e12631, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31038259

RESUMO

OBJECTIVES: Growth differentiation factor 11 (GDF11), an emerging secreted member of the TGF-beta superfamily, plays essential roles in development, physiology and multiple diseases; however, its role during adipogenic differentiation and the underlying mechanisms remains poorly understood. MATERIALS AND METHODS: Bone marrow-derived human mesenchymal stem cells (hMSCs) and 3T3-L1 pre-adipocytes were induced with adipogenic culture medium supplementing with different concentrations of recombinant GDF11 (rGDF11 0, 10, 50, 100 ng mL-1 ). Oil Red O staining, qRT-PCR analysis, Western blot analysis and immunofluorescence staining were performed to assay adipogenesis. RESULTS: For both hMSCs and 3T3-L1 pre-adipocytes, the presence of rGDF11 leads to a dose-dependent reduction of intracellular lipid droplet accumulation and suppressed adipogenic-related gene expression. Mechanically, GDF11 inhibits adipogenesis by activating Smad2/3-dependent TGF-beta signalling pathway, and these inhibitory effects could be restored by SB-431542, a pharmacological TGF-beta type I receptor inhibitor. CONCLUSIONS: Taken together, our data indicates that GDF11 inhibits adipogenic differentiation in both hMSCs and 3T3-L1 pre-adipocytes by activating Smad2/3-dependent TGF-beta signalling pathway.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Fatores de Diferenciação de Crescimento/metabolismo , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células 3T3-L1 , Animais , Linhagem Celular , Expressão Gênica/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos
11.
Sensors (Basel) ; 19(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991644

RESUMO

A composite concrete column with encased fiber reinforced polymer (FRP) confined concrete cores (EFCCC) is proposed in this paper. The cross-sectional form of the EFCCC column is composed of several orderly arranged FRP confined concrete cores (FCCCs) surrounding a filled core concrete. This novel composite column has several advantages, such as higher compressive capacity, stronger FRP confinement, and ductile response. The compressive experiment is employed to investigate the compressive behavior of the EFCCC column with deferent parameters, such as outside concrete and stirrups. Test results show that the main failure mode of the EFCCC column with and without an outside concrete or stirrups is tensile fracture of the glass fiber reinforced polymer (GFRP) tubes. Compared to a reinforced concrete (RC) column, the strength and ductility of the EFCCC column was obviously improved by 20% and 500%, respectively. A finite element model (FEM) based on the Drucker-Prager (D-P) was developed that can accurately predict the axial compression behavior of the composite column with FRP confined concrete core. The predicted results obtained by using this FEM have excellent agreement with the experimental results.

12.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781756

RESUMO

An innovative pultruded fiber reinforced polymer (FRP)⁻wood composite (PFWC) column with a lightweight southern pine wood core confined by outer FRP sheets was manufactured using an improved pultrusion process. Axial compression tests with both ends pinned as boundary conditions were employed to investigate the mechanical performance of such PFWC columns under concentric load. Through experimental investigations, the effects of the slenderness ratio on the failure modes and the axial load bearing capacities of the PFWC columns were evaluated. The failure modes showed that the specimens with a slenderness ratio less than 43.2 failed through compressive failure at junctions on FRP sheets, while those with slenderness ratios larger than 57.6 showed global buckling. Strain responses on specimens with different slenderness ratios are consistent with the observed failure modes. Finite element analysis was carried out to validate the experimental results, and satisfactory agreement was found between the failure modes and load⁻displacement curves. An empirical equation was developed with a new factor taking 0.65 into account to predict the load bearing capacities of the PFWC columns, and good agreement was found.

14.
Ann N Y Acad Sci ; 1440(1): 54-66, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30575056

RESUMO

Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor-ß (TGF-ß) superfamily, has been reported to have the capacity to reverse age-related pathologic changes and regulate organ regeneration after injury; however, the role of GDF11 in fracture healing and bone repair is still unclear. Here, we established a fracture model in 12-week-old male mice to observe two healing states: the cartilaginous callus and bony callus formation phases. Our results showed that recombinant GDF11 (rGDF11) injection inhibits cartilaginous callus maturation and hard callus formation, thereby impairing fracture healing in vivo. In vitro, rGDF11 administration inhibited chondrocyte differentiation and maturation by phosphorylating SMAD2/3 protein and inhibiting RUNX2 expression. Notably, inhibition of TGF-ß activity by a SMAD-specific inhibitor attenuated GDF11 effects. Thus, our study demonstrates that, rather than acting as a rejuvenating agent, rGDF11 impairs fracture healing by inhibiting chondrocyte differentiation and maturation.

15.
Transl Psychiatry ; 8(1): 270, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531795

RESUMO

Genetic analyses of psychiatric illnesses, such as bipolar disorder (BPD), have revealed essential information regarding the underlying pathological mechanisms. While such studies in populations of European ancestry have achieved prominent success, understanding the genetic risk factors of these illnesses (especially BPD) in Chinese population remains an urgent task. Given the lack of genome-wide association study (GWAS) of BPD in Chinese population from Mainland China, replicating the previously reported GWAS hits in distinct populations will provide valuable information for future GWAS analysis in Han Chinese. In the present study, we have recruited 1146 BPD cases and 1956 controls from Mainland China for genetic analyses, as well as 65 Han Chinese brain amygdala tissues for mRNA expression analyses. Using this clinical sample, one of the largest Han Chinese BPD samples till now, we have conducted replication analyses of 21 single nucleotide polymorphisms (SNPs) extracted from previous GWAS of distinct populations. Among the 21 tested SNPs, 16 showed the same direction of allelic effects in our samples compared with previous studies; 6 SNPs achieved nominal significance (p < 0.05) at one-tailed test, and 2 additional SNPs showed marginal significance (p < 0.10). Aside from replicating previously reported BPD risk SNPs, we herein also report several intriguing findings: (1) the SNP rs174576 was associated with BPD in our Chinese sample and in the overall global meta-analysis, and was significantly correlated with FADS1 mRNA in diverse public RNA-seq datasets as well as our in house collected Chinese amygdala samples; (2) two (partially) independent SNPs in MAD1L1 were both significantly associated with BPD in our Chinese sample, which was also supported by haplotype analysis; (3) a rare SNP rs78089757 in 10q26.13 region was a genome-wide significant variant for BPD in East Asians, and this SNP was near monomorphic in Europeans. In sum, these results confirmed several significant BPD risk genes. We hope this Chinese BPD case-control sample and the current brain amygdala tissues (with continuous increasing sample size in the near future) will provide helpful resources in elucidating the genetic and molecular basis of BPD in this major world population.


Assuntos
Transtorno Bipolar/genética , Proteínas de Ciclo Celular/genética , Ácidos Graxos Dessaturases/genética , Proteínas Nucleares/genética , Grupo com Ancestrais do Continente Asiático/genética , Transtorno Bipolar/epidemiologia , China/epidemiologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores de Risco
16.
Anat Rec (Hoboken) ; 301(11): 1917-1927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30288932

RESUMO

It is well known that nerves modulate the development and remodeling of blood vessels by releasing different neuropeptides and neurotransmitters. Secretoneurin (SN), a neuropeptide located in nerve fibers along blood vessels, acts as a pro-angiogenic agent and induces postnatal vasculogenesis. However, little is known about its involvement in arteriogenesis. In the present study, we tested the hypothesis that SN promotes arteriogenesis in a rat model of hind limb ischemia, as such, we evaluated the effect of this neuropeptide on proliferation and the production of adhesion and chemotaxis molecules in vascular smooth muscle cells (VSMCs), the main component that carries the burden of the transformation of a small arteriole into a large collateral vessel. In vivo, SN-immunoreactive nerve fibers were abundantly distributed in the adventitia of the collateral vessel. Moreover, administration of SN induced cell proliferation in the vascular wall and the infiltration of inflammatory cells/macrophages to promote collateral vessel growth. This was shown by an increased density of arterioles/arteries, together with a well-developed network of collateral vessels, and well-preserved skeletal muscles. In vitro, SN exerted proliferative effects on VSMCs and stimulated these cells to express adhesion molecules. In conclusion, our data demonstrate for the first time that SN acts as a mediator of inflammation, contributing to collateral vessel growth, in addition to directly stimulating cell proliferation in the vascular wall to promote collateral vessel growth in a rat model of hind limb ischemia. Anat Rec, 301:1917-1927, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Circulação Colateral/fisiologia , Artéria Femoral/metabolismo , Músculo Liso Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Neuropeptídeos/metabolismo , Secretogranina II/metabolismo , Animais , Células Cultivadas , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Membro Posterior/diagnóstico por imagem , Membro Posterior/metabolismo , Isquemia/diagnóstico por imagem , Isquemia/metabolismo , Músculo Liso Vascular/química , Músculo Liso Vascular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Neuropeptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Secretogranina II/farmacologia
17.
EMBO J ; 37(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30181118

RESUMO

The osteogenic differentiation of mesenchymal stem cells (MSCs) is governed by multiple mechanisms. Growing evidence indicates that ubiquitin-dependent protein degradation is critical for the differentiation of MSCs and bone formation; however, the function of ubiquitin-specific proteases, the largest subfamily of deubiquitylases, remains unclear. Here, we identify USP34 as a previously unknown regulator of osteogenesis. The expression of USP34 in human MSCs increases after osteogenic induction while depletion of USP34 inhibits osteogenic differentiation. Conditional knockout of Usp34 from MSCs or pre-osteoblasts leads to low bone mass in mice. Deletion of Usp34 also blunts BMP2-induced responses and impairs bone regeneration. Mechanically, we demonstrate that USP34 stabilizes both Smad1 and RUNX2 and that depletion of Smurf1 restores the osteogenic potential of Usp34-deficient MSCs in vitro Taken together, our data indicate that USP34 is required for osteogenic differentiation and bone formation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Regeneração Óssea/genética , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteases Específicas de Ubiquitina/genética
18.
Phys Chem Chem Phys ; 20(32): 20856-20862, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30066712

RESUMO

The reverse process of dye molecule adsorption on the surface of nanoparticles, that is, the desorption process, has long been neglected in the field of dye-sensitized solar cells (DSCs). It is crucial to develop an in situ technology that controls the rate of dye desorption. Meanwhile, controlling the coverage of dye-sensitized films is still a major challenge. The work presented in this paper applies a simple and effective method to study the in situ mass change responses on dye-sensitized TiO2 films over different potential ranges. The result shows that dye molecule desorption is accompanied by the adsorption of ions in solution. Due to this parasitic adsorption process, the frequency responses in the electrochemical quartz crystal microbalance (EQCM) test cannot be completely attributable to dye molecule desorption. We established a new model to eliminate the impact of this parasitic adsorption process. The kinetics of in situ desorption of dye molecules on sensitized TiO2 nanoparticles in a high-concentration solution was studied. We found that the in situ desorption of dye could be described by pseudo-first-order kinetics. The results suggest that the dye in situ desorption rate is dependent on the bias voltage, and the coverage of dye on the surface of TiO2 films can be further controlled. In-depth research of the dye desorption process is theoretically significant to study DSC stability, new dye synthesis and complex interface structures.

19.
Mol Neuropsychiatry ; 4(1): 30-34, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29998116

RESUMO

Genome-wide association studies suggest that rs1064395 in the neurocan gene (NCAN) is a potential risk factor for bipolar disorder (BPD), and further replication analyses in larger independent samples are needed. We herein analyzed rs1064395 in a Han Chinese sample of 1,146 BPD cases and 2,031 controls, followed by a meta-analysis of BPD samples from worldwide populations including a total of 15,318 cases and 91,990 controls. The meta-analysis found that rs1064395 showed a genome-wide significant association with BPD (p = 4.92 × 10-9, OR = 1.126 for the A allele), although it did not reach the significance level in the Han Chinese sample (p = 0.415, OR = 1.070 for the A allele). We also examined the association between the single nucleotide polymorphisms and major depressive disorder (MDD) given the presumed genetic overlap between BPD and MDD, and rs1064395 was also associated with MDD (p = 0.0068, OR = 1.067 for the A allele) in a meta-analysis of 14,543 cases and 14,856 controls. Our data provide further evidence for the involvement of NCAN in the genetic susceptibility to BPD and also implicate its broader role in major mood disorders.

20.
BMC Psychiatry ; 18(1): 149, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801445

RESUMO

BACKGROUND: Accumulating evidences indicated that mitochondrial abnormalities were associated with bipolar disorder. As a sensitive index of mitochondrial function and biogenesis, Mitochondrial DNA copy number (mtDNAcn) may be involved in the pathophysiology of bipolar disorder. METHODS: Leukocyte relative mtDNAcn was measured by quantitative polymerase chain reaction in subjects with BD (n = 131) in manic, depressive, and euthymic symptoms. Thirty-four healthy individuals were used as comparison control. BD clinical symptomatology was evaluated by Young Mania Rating Scale (YMRS), Hamilton Depression Scale (HAM-D), Clinical Global Impression-Bipolar Disorder-Severity of Illness Scale (CGI-BD-S), and the Positive and Negative Syndrome Scale (PANSS). RESULTS: Compared to healthy controls, BD patients with manic and depressive symptoms presented significantly decreased mtDNAcn levels (p-value = 0.009 and 0.041, respectively). No significant differences were detected in mtDNAcn between euthymic patients and healthy controls. The mtDNAcn was negatively correlated with the number of relapses in manic patients (ß = - 0.341, p = 0.044). CONCLUSIONS: Our study described the first evidence of (1) a significant decline of mtDNAcn in manic BD patients, (2) a similar decreased level of mtDNAcn between manic and depressed BD patients, (3) a negative correlation of mtDNAcn with number of relapses in patients suffering from manic states. Alterations of mtDNAcn in manic and depressed patients, which may reflect disturbances of energy metabolism, supported the role of mitochondrial abnormalities in the pathophysiology of BD.


Assuntos
Transtorno Bipolar , Variações do Número de Cópias de DNA , DNA Mitocondrial/análise , Depressão , Adulto , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Transtorno Bipolar/psicologia , Correlação de Dados , Depressão/diagnóstico , Depressão/metabolismo , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Escalas de Graduação Psiquiátrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA