Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Filtros adicionais











Intervalo de ano
1.
Artigo em Inglês | MEDLINE | ID: mdl-31418146

RESUMO

Heavy metals have caused serious environmental problems and threat to human health. Ultrathin and holey two-dimensional (2D) nanosheets have recently drawn significant attention as superb adsorbent material to remove heavy metal ions due to their unique physicochemical properties. Herein, we report a self-template-directed ultrafast reaction route to synthesis porous hydroxyapatite (Ca10(PO4)6(OH)2) nanosheets via a microwave-assisted hydrothermal method using poly(allylamine hydrochloride) as an additive. The resulting hydroxyapatite nanosheets showed a high specific surface area (92.9 m2 g-1) and excellent adsorption performance for various heavy metal ions including Pb(II), Cu(II), and Cd(II), with maximum adsorption capacities of 210.5, 31.6, and 24.9 mg g-1, respectively. The adsorption kinetics fitted well with the pseudo-second-order equation and the equilibrium data showed a high correlation coefficient with the Langmuir model. Based on the experimental results and analysis, we can conclude that the sorption of heavy metal ions with the hydroxyapatite nanosheets mainly attributes to surface complexation and cation exchange. The present synthetic strategy allows the fast and massive production of porous hydroxyapatite ultrathin nanosheets and may also potentially be applicable to the fabrication of other metal phosphates with assembled or hierarchical porous structures towards various applications such as water purification.

2.
ACS Nano ; 13(6): 7270-7280, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184851

RESUMO

Aqueous zinc-ion batteries (ZIBs) possess energy storages advantages, including low cost, high safety, and durable lifetimes. Materials are worth exploring to achieve high-performance batteries. Although Bi2S3 is predicted to be highly capable for energy storage, it has never been used in aqueous ZIBs due to the structure degradation. Herein, we apply Bi2S3 in aqueous ZIBs and develop an ionic liquid enhanced poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coating to perfectly stabilize the Bi2S3 electrode, which plays three roles of providing high conductivity, inhibiting grain pulverization and sulfur dissolution, and acting as an artificial solid electrolyte interphase. The synergistic merits of the desirable capacity of Bi2S3 and a versatile polymer provide a capacity of 275 mAh g-1 and excellent cycling stability up to 5300 cycles with 95.3% retention. A reversible conversion mechanism into hexagonal ZnS is revealed by investigation of a variety of spectra. The prepared quasi-solid battery based on a high concentration salt electrolyte/polyacrylamide hydrogel exhibits a high energy density (315 Wh kg-1) and long-term cyclability over 5300 cycles. For demonstration, a single battery can power a digital hygrometer thermometer for more than 14 h 48 min. This work highlights a ground-breaking demonstration of incorporating structural integrity with stable interfacial chemistry.

3.
J Hazard Mater ; 378: 120669, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202057

RESUMO

Boron nitride (BN) has received tremendous attention as a promising adsorbent material. However, unsatisfactory uptake capacities over heavy metal ions limit their practical applications. Herein, we have synthesized a novel hierarchical meso/macroporous BN fibers (MBNFs) via a simple carbothermal reduction method using luffa sponge as a template. The as-obtained MBNFs comprise densely arranged parallel macrochannels on a micrometer scale, with mesopores on the surface of the channel. The resulting MBNFs exhibited remarkable adsorption performance for different heavy metal ions including Cd2+, Zn2+, Cr3+, and Pb2+ with maximum uptake capacities as high as 2989, 1885, 723, and 453 mg/g, respectively. In particular, the adsorption capacity for Cd2+ and Zn2+ exceed the highest values reported for BN materials. In addition, the MBNFs showed excellent stability to re-use for a few times. The present MBNFs materials prepared using cheap and earth abundant luffa sponge may find broad applications such as adsorbent for environmental remediation applications.

4.
J Comput Chem ; 40(18): 1693-1700, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30889285

RESUMO

Identifying strategies for beneficial band engineering is crucial for the optimization of thermoelectric (TE) materials. In this study, we demonstrate the beneficial effects of ionic dopants on n-type Mg3 Sb2 . Using the band-resolved projected crystal orbital Hamilton population, the covalent characters of the bonding between Mg atoms at different sites are observed. By partially substituting the Mg at the octahedral sites with more ionic dopants, such as Ca and Yb, the conduction band minimum (CBM) of Mg3 Sb2 is altered to be more anisotropic with an enhanced band degeneracy of 7. The CBM density of states of doped Mg3 Sb2 with these dopants is significantly enlarged by band engineering. The improved Seebeck coefficients and power factors, together with the reduced lattice thermal conductivities, imply that the partial introduction of more ionic dopants in Mg3 Sb2 is a general solution for its n-type TE performance. © 2019 Wiley Periodicals, Inc.

5.
Small ; 14(37): e1802615, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30117655

RESUMO

SnTe is known as an eco-friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self-compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic-scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94 Mn0.09 Te at 873 K and the ZTave from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZTmax and ZTave of this work are the highest values among all single-element-doped SnTe systems.

6.
Sci Eng Ethics ; 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29353362

RESUMO

By following a recently published paper entitled "The effect of publishing a highly cited paper on a journal's impact factor: a case study of the Review of Particle Physics" in Learned Publishing, we argue that it is not suitable for journals to bid for the right to publish a review that is likely to be highly cited. A few suggestions are also provided to deal with the special case of the Review of Particle Physics phenomenon.

7.
Phys Chem Chem Phys ; 18(30): 20726-37, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27412367

RESUMO

In this study, the thermoelectric properties of Mg2Sn0.98-xPbxSb0.02 were first studied, and then Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 were accordingly investigated. The results showed that the formation of Mg2Sn0.98-xPbxSb0.02 solid solutions effectively reduced the lattice thermal conductivity of Mg2Sn. The room temperature lattice thermal conductivity of Mg2Sn0.98Sb0.02 is ∼5.2 W m(-1) K(-1) but only ∼2.5 W m(-1) K(-1) for Mg2Sn0.73Pb0.25Sb0.02, a reduction of ∼52%. Further alloying Mg2Sn0.98-xPbxSb0.02 with Mg2Si or Mg2Ge to form Mg2Sn0.93-xSixPb0.05Sb0.02 or Mg2Sn0.93-xGexPb0.05Sb0.02 reduced the lattice thermal conductivity significantly due to enhanced phonon scattering by point defects as well as nanoparticles. Moreover, bipolar thermal conductivities were suppressed due to the larger bandgap of Mg2Si and Mg2Ge than Mg2Sn. Furthermore, similar to the pseudo-binary Mg2Sn-Mg2Si and Mg2Sn-Mg2Ge systems, band convergence was also observed in pseudo-ternary Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. The convergence of conduction bands led to higher PFs at lower temperatures for Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. As a result, higher peak ZTs of ∼1.3 for Mg2Sn0.63Si0.3Pb0.05Sb0.02 and ∼1.2 for Mg2Sn0.68Ge0.25Pb0.05Sb0.02 were achieved.

8.
Proc Natl Acad Sci U S A ; 112(27): 8205-10, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100905

RESUMO

The formula for maximum efficiency (ηmax) of heat conversion into electricity by a thermoelectric device in terms of the dimensionless figure of merit (ZT) has been widely used to assess the desirability of thermoelectric materials for devices. Unfortunately, the ηmax values vary greatly depending on how the average ZT values are used, raising questions about the applicability of ZT in the case of a large temperature difference between the hot and cold sides due to the neglect of the temperature dependences of the material properties that affect ZT. To avoid the complex numerical simulation that gives accurate efficiency, we have defined an engineering dimensionless figure of merit (ZT)eng and an engineering power factor (PF)eng as functions of the temperature difference between the cold and hot sides to predict reliably and accurately the practical conversion efficiency and output power, respectively, overcoming the reporting of unrealistic efficiency using average ZT values.

9.
Proc Natl Acad Sci U S A ; 112(11): 3269-74, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733845

RESUMO

Thermoelectric power generation is one of the most promising techniques to use the huge amount of waste heat and solar energy. Traditionally, high thermoelectric figure-of-merit, ZT, has been the only parameter pursued for high conversion efficiency. Here, we emphasize that a high power factor (PF) is equivalently important for high power generation, in addition to high efficiency. A new n-type Mg2Sn-based material, Mg2Sn0.75Ge0.25, is a good example to meet the dual requirements in efficiency and output power. It was found that Mg2Sn0.75Ge0.25 has an average ZT of 0.9 and PF of 52 µW⋅cm(-1)⋅K(-2) over the temperature range of 25-450 °C, a peak ZT of 1.4 at 450 °C, and peak PF of 55 µW⋅cm(-1)⋅K(-2) at 350 °C. By using the energy balance of one-dimensional heat flow equation, leg efficiency and output power were calculated with Th = 400 °C and Tc = 50 °C to be of 10.5% and 6.6 W⋅cm(-2) under a temperature gradient of 150 °C⋅mm(-1), respectively.

10.
Nanotechnology ; 24(34): 345705, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23912680

RESUMO

In the present work, the effect of aluminum (Al) on the thermoelectric properties of PbTe is studied. Aluminum doped PbTe samples, fabricated by a ball milling and hot pressing, have Seebeck coefficients between -100 and -200 µV K-1 and electrical conductivities of (3.6-18) × 104 S m-1 at room temperature, which means that Al is an effective donor in PbTe. The first principle calculations clearly show an increase of the density of states close to the Fermi level in the conduction band due to Al doping, which averages up the energy and effective mass of electrons, resulting in enhancement of the Seebeck coefficient. The maximum figure-of-merit ZT of 1.2 is reached at 770 K in the Al0.03PbTe sample.


Assuntos
Alumínio/química , Eletricidade , Chumbo/química , Nanoestruturas/química , Telúrio/química , Temperatura Ambiente , Difusão , Condutividade Elétrica , Elétrons , Nanoestruturas/ultraestrutura , Difração de Raios X
11.
Proc Natl Acad Sci U S A ; 110(33): 13261-6, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901106

RESUMO

From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.


Assuntos
Irídio/química , Modelos Químicos , Nanoestruturas/química , Telúrio/química , Temperatura Ambiente , Compostos de Estanho/química , Condutividade Elétrica , Teste de Materiais , Microscopia Eletrônica de Varredura , Difração de Raios X
12.
Phys Chem Chem Phys ; 15(18): 6809-16, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23546542

RESUMO

Filled-skutterudites are promising mid-temperature thermoelectric materials for heat-to-electricity conversion. Traditional preparation methods need a very long time annealing (7 to 14 days) to form the right skutterudite phase. Annealing is especially critical for p-type filled-skutterudites, since Fe4Sb12 needs filler atoms to enter the cage to form a stable phase. In this work, we prepared Ce and Nd double-filled p-type skutterudite materials by directly ball-milling the quenched ingot without annealing followed by hot-pressing. The results showed that with appropriate ball-milling time, a pure p-type filled-skutterudite phase can be obtained in just 5 minutes by hot-pressing. The samples prepared in this way have the same quality as those prepared by traditional long time annealing methods, and showed ZT values above 1 between 700 and 800 K. This simple and efficient method is very useful for the preparation of many other materials that are kinetically difficult to make.

13.
J Am Chem Soc ; 134(42): 17731-8, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23025440

RESUMO

Group IIIA elements (B, Ga, In, and Tl) have been doped into PbSe for enhancement of thermoelectric properties. The electrical conductivity, Seebeck coefficient, and thermal conductivity were systematically studied. Room-temperature Hall measurements showed an effective increase in the electron concentration upon both Ga and In doping and the hole concentration upon Tl doping to ~7 × 10(19) cm(-3). No resonant doping phenomenon was observed when PbSe was doped with B, Ga, or In. The highest room-temperature power factor ~2.5 × 10(-3) W m(-1) K(-2) was obtained for PbSe doped with 2 atom % B. However, the power factor in B-doped samples decreased with increasing temperature, opposite to the trend for the other dopants. A figure of merit (ZT) of ~1.2 at ~873 K was achieved in PbSe doped with 0.5 atom % Ga or In. With Tl doping, modification of the band structure around the Fermi level helped to increase the Seebeck coefficient, and the lattice thermal conductivity decreased, probably as a result of effective phonon scattering by both the heavy Tl(3+) ions and the increased grain boundary density after ball milling. The highest p-type ZT value was ~1.0 at ~723 K.

14.
J Am Chem Soc ; 134(24): 10031-8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22676702

RESUMO

We present detailed studies of potassium doping in PbTe(1-y)Se(y) (y = 0, 0.15, 0.25, 0.75, 0.85, 0.95, and 1). It was found that Se increases the doping concentration of K in PbTe as a result of the balance of electronegativity and also lowers the lattice thermal conductivity because of the increased number of point defects. Tuning the composition and carrier concentration to increase the density of states around the Fermi level results in higher Seebeck coefficients for the two valence bands of PbTe(1-y)Se(y). Peak thermoelectric figure of merit (ZT) values of ~1.6 and ~1.7 were obtained for Te-rich K(0.02)Pb(0.98)Te(0.75)Se(0.25) at 773 K and Se-rich K(0.02)Pb(0.98)Te(0.15)Se(0.85) at 873 K, respectively. However, the average ZT was higher in Te-rich compositions than in Se-rich compositions, with the best found in K(0.02)Pb(0.98)Te(0.75)Se(0.25). Such a result is due to the improved electron transport afforded by heavy K doping with the assistance of Se.

15.
Nano Lett ; 12(5): 2324-30, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22493974

RESUMO

Thallium (Tl)-doped lead telluride (Tl(0.02)Pb(0.98)Te) thermoelectric materials fabricated by ball milling and hot pressing have decent thermoelectric properties but weak mechanical strength. Addition of silicon (Si) nanoparticles strengthened the mechanical property by reducing the grain size and defect density but resulted in low electrical conductivity that was not desired for any thermoelectric materials. Fortunately, doping of sodium (Na) into the Si added Tl(0.02)Pb(0.98)Te brings back the high electrical conductivity and yields higher figure-of-merit ZT values of ∼1.7 at 770 K. The ZT improvement by Si addition and Na doping in Tl(0.02)Pb(0.98)Te sample is the direct result of concurrent electron and phonon engineering by improving the power factor and lowering the thermal conductivity, respectively.

16.
Nano Lett ; 11(2): 556-60, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21186782

RESUMO

Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. The highest peak ZT of a p-type half-Heusler has been so far reported about 0.5 due to the high thermal conductivity. Through a nanocomposite approach using ball milling and hot pressing, we have achieved a peak ZT of 0.8 at 700 °C, which is about 60% higher than the best reported 0.5 and might be good enough for consideration for waste heat recovery in car exhaust systems. The improvement comes from a simultaneous increase in Seebeck coefficient and a significant decrease in thermal conductivity due to nanostructures. The samples were made by first forming alloyed ingots using arc melting and then creating nanopowders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Further improvement in ZT is expected when average grain sizes are made smaller than 100 nm.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Semicondutores , Cristalização/métodos , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA