Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 570: 382-389, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32182478

RESUMO

Electrochromic devices with low-cost, energy-saving advantages, and controllable color switching have gained widely attention. Yet, electrochromic materials are limited for smart window due to challenges such as difficulty freestanding, monotonous color change, slow switching capability, and low optical contrast. In this work, a freestanding copolymers based on Poly(N-vinylcarbazole) (PVK) and 3, 4-ethoxylenedioxythiophene (EDOT) are designed. The copolymer as-synthesized by the good secondary film-forming of PVK not only contains the freestanding property of PVK, but also possesses the excellent electrical and electrochemical properties of poly(3, 4-ethoxylenedioxythiophene) (PEDOT). The freestanding copolymer was used to create the multicolor: brown, dark brown, purple, and blue. A high optical contrast of up to 39.1% and a color efficiency of up to 107.00 cm 2C-1 prove a significant coloration and bleaching effect, which is satisfactory for the application of electrochromic devices. Further, an electrochromic device based on P(PVK-co-EDOT) as coloring materials is constructed. This work contributes new ideas into the design of electrochromic smart materials.

2.
J Virol ; 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161173

RESUMO

The nonenveloped polyomavirus SV40 must penetrate the host endoplasmic reticulum (ER) membrane to enter the cytosol in order to promote infection. How this is accomplished is not entirely clear. Here we demonstrate that the cytosolic chaperone Ubiquilin4 (Ubqln4) binds directly to the ER membrane J proteins B12 and B14. Strategically localized at the ER-cytosol interface, Ubqln4 captures SV40 emerging from the ER, thereby facilitating ER escape of the virus into the cytosol that leads to infection. Strikingly, Ubqln4 engages the J proteins in a J-domain-independent manner, in contrast to the previously reported Hsc70-Hsp105-SGTA-Bag2 cytosolic complex that also mediates SV40 ER-to-cytosol transport. Our results also reveal that the H domain and STI1 motif (1, 2) of Ubqln4 support J protein-binding essential for SV40 infection. Together, these data further clarify the molecular basis by which a nonenveloped virus escapes a host membrane during infectious entry.IMPORTANCEHow a nonenveloped virus escapes from a host membrane to promote infection remains an enigmatic process. In the case of the nonenveloped polyomavirus SV40, penetration of the ER membrane to reach the cytosol is a decisive virus infection step. In this study, we found a new host factor called Ubqln4 that facilitates escape of SV40 from the ER into the cytosol, thereby providing a path for the virus to enter the nucleus to cause infection.

3.
J Hazard Mater ; 391: 122254, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32062542

RESUMO

In this study, a new barium titanate@polyurethane/polysulfonamide (BaTiO3@PU/PSA) composite nanofibrous membrane with comprehensive properties for high temperature filtration and robust PM2.5 removal was successfully fabricated through the blending spinning of PU and PSA and the introduction of BaTiO3. As a consequence, the BaTiO3@PU/PSA membrane achieved the high capture efficiency of 99.99 % for fine particulates, low pressure drop of 39.4 ± 0.2 Pa, good mechanical property (13.27 MPa), sufficient flexibility, high thermal stability (up to 300 °C), favorable flame-retardancy as well as superior chemical resistance against acid and alkali. Especially, to intuitively reveal the relationship between the fiber structure, high temperature environment, gas velocity and filtration performance of the composite membrane, the filtration processes were carefully investigated through the analog simulation. More importantly, the BaTiO3@PU/PSA membrane exhibited high-efficiency PM2.5 purification capacity, and the removal efficiency kept stable after high temperature, acid or alkali treatment, ascribing to the advantageous structure of PSA, PU and BaTiO3. Overall, the BaTiO3@PU/PSA nanofiber membranes with versatility are a promising high-efficiency candidate for dust removal, particularly in harsh conditions.

4.
ACS Nano ; 14(1): 1093-1101, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31934745

RESUMO

Single-atom catalysts (SACs) have attracted much attention owning to their high catalytic properties. Herein, yttrium and scandium rare earth SACs are successfully synthesized on a carbon support (Y1/NC and Sc1/NC). Different from the well-known M-N4 structure of M-N-C (M = Fe, Co) catalysts, Sc and Y atoms with a large atomic radius tend to be anchored to the large-sized carbon defects through six coordination bonds of nitrogen and carbon. Although Y- and Sc-based nanomaterials are generally inactive to room-temperature electrochemical reactions, Y1/NC and Sc1/NC SACs exhibit catalytic activities to nitrogen reduction reaction and carbon dioxide reduction reaction due to the modulation of the local electronic structure of Y/Sc single atoms by N and C coordination. The catalytic functions of rare earth single atoms not only demonstrate the magical effect of SACs but also promote the application of rare earth catalysts in room-temperature electrochemical reactions.

5.
FASEB J ; 34(2): 2075-2086, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907982

RESUMO

In the free-living nematode Caenorhabditis elegans, the serine/threonine-specific protein kinase, AKT, is known to play a key role in dauer formation, life-span, and stress-resistance through the insulin-like signaling pathway. Although the structure and function of AKT-coding genes of C. elegans are understood, this is not the case for homologous genes in parasitic nematodes. In the present study, we explored a C. elegans akt-1 gene homolog in the parasitic nematode Haemonchus contortus, investigated its transcript isoforms (Hc-akt-1a and Hc-akt-1b), and studied expression and function using both homologous and heterologous functional genomic tools. In C. elegans, we showed that the predicted promoter of Hc-akt-1 drives substantial expression in ASJ neurons of the N2 (wild-type) strain. In H. contortus (Haecon-5 stain), RNAi (soaking) led to a significantly decreased transcript abundance for both Hc-akt-1a and Hc-akt-1b, and reduced larval development in larval stages in vitro. Chemical inhibition was also shown to block larval development. Taken together, the evidence from this study points to a key functional role for Hc-akt-1 in H. contortus.

6.
Chemosphere ; 242: 124959, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31669990

RESUMO

Long-term exposure to arsenic can cause liver injury and fibrosis. The activation of hepatic stellate cells (HSCs) plays an essential role in the process of liver fibrosis. We found that NaAsO2 caused liver damage and fibrosis in vivo, accompanied by excessive collagen deposition and HSCs activation. In addition, NaAsO2 upregulated autophagy flux, elevated the level of cytoplasmic cathepsin B (CTSB), and activated the NOD-like receptors containing pyrin domain 3 (NLRP3) inflammasome in a subtle way. Consistent with these findings in vivo, we demonstrated that NaAsO2-induced activation of HSCs depended on CTSB-mediated NLRP3 inflammasome activation in HSC-t6 cells and rats primary HSCs. Moreover, inhibition of autophagy decreased the cytoplasmic CTSB and alleviated the activation of the NLRP3 inflammasome, thereby attenuating the NaAsO2-induced HSCs activation. In summary, these results indicated that NaAsO2 induced HSCs activation via autophagic-CTSB-NLRP3 inflammasome pathway. These findings may provide a novel insight into the potential mechanism of NaAsO2-induced liver fibrosis.


Assuntos
Arsênico/toxicidade , Autofagia , Catepsina B/metabolismo , Células Estreladas do Fígado/metabolismo , Inflamassomos/fisiologia , Cirrose Hepática/induzido quimicamente , Animais , Arsênico/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos
7.
ACS Appl Mater Interfaces ; 12(1): 1222-1231, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31805765

RESUMO

Microwave absorbing materials have attracted much attention in solving electromagnetic interference and pollution problems. Hierarchical cobalt selenides have been obtained through a facile selenization annealing process. The as-prepared samples exhibit distinct reflection losses (RL) and frequency responses via tailoring their crystalline configurations, with excellent absorption in Ku, X, or C band. All of the samples show RL greater than or near -50 dB with effective bandwidths more than 4 GHz, indicating that they may serve as high-efficient and frequency-tunable microwave absorbers. Especially, the sample annealed at 400 °C shows a competitive RL of -62.04 dB at 9.92 GHz with a thickness of 2.25 mm; meanwhile, its effective absorption bandwidth reaches 5.36 GHz with a thickness as small as 1.56 mm. The cobalt selenides as microwave absorbers exhibit a promising prospect applied in complex electromagnetic environments.

8.
Toxicol Lett ; 320: 95-102, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760062

RESUMO

Exposure to organic solvent in industry, including n-hexane is correlated with central-peripheral axonopathy, which is mediated by its active metabolite, 2,5-hexanedione (HD). However, the underlying mechanism is still largely unknown. Recently identified microRNAs (miRNAs) may play important roles in toxicant exposure and in the process of toxicant-induced neuropathys. To examine the role of miRNAs in HD-induced toxicity, neuropathic animal model was successfully built. miRNA microarray analysis revealed 105 differentially expressed miRNAs after HD exposure. Bioinformatics analysis showed that "Axon" and "Neurotrophin Signaling Pathway" was the top significant GO term and pathway, respectively. 7 miRNAs both related to "Axon" and "Neurotrophin Signaling Pathway" were screened out and further confirmed by Real-Time PCR. Correspondingly, the deregulation expression levels of proteins of four target genes (GSK3ß, Map3k1, BDNF and MAP1B) were further confirmed via western blot, verifying the results of gene target analysis. Taken together, our results showed that the axon-related miRNAs to be associated with MAP1B or neurotrophin signal pathways changed in nerve tissues following HD exposure. These miRNAs may play important roles in HD-induced neurotoxicity.


Assuntos
Axônios/efeitos dos fármacos , Hexanonas/toxicidade , MicroRNAs/metabolismo , Síndromes Neurotóxicas/etiologia , Nervo Isquiático/efeitos dos fármacos , Solventes/toxicidade , Medula Espinal/efeitos dos fármacos , Animais , Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Transcriptoma
9.
J Hazard Mater ; 384: 121390, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31735470

RESUMO

Chronic arsenic exposure is a significantly risk factor for pancreatic dysfunction and type 2 diabetes (T2D). Ferroptosis is a newly identified iron-dependent form of oxidative cell death that relies on lipid peroxidation. Previous data have indicated that ferroptosis is involved in various diseases, including cancers, neurodegenerative diseases, and T2D. However, the concrete effect and mechanism of ferroptosis on pancreatic dysfunction triggered by arsenic remains unknown. In this study, we verified that ferroptosis occurred in animal models of arsenic-induced pancreatic dysfunction through assessing proferroptotic markers and morphological changes in mitochondria. In vitro, arsenic caused execution of ferroptosis in a dose-dependent manner, which could be significantly reduced by ferrostatin-1. Additionally, arsenic damaged mitochondria manifested as diminishing of mitochondrial membrane potential, reduced cytochrome c level and production of mitochondrial reactive oxygen species (MtROS) in MIN6 cells. Using the Mito-TEMPO, we found the autophagy level and subsequent ferroptotic cell death induced by arsenic were both alleviated. With autophagy inhibitor chloroquine, we further revealed that ferritin regulated ferroptosis through the MtROS-autophagy pathway. Collectively, NaAsO2-induced ferroptotic cell death is relied on the MtROS-dependent autophagy by regulating the iron homeostasis. Ferroptosis is involved in pancreatic dysfunction triggered by arsenic, and arsenic-induced ferroptosis involves MtROS, autophagy, ferritin.

10.
Amino Acids ; 52(1): 87-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31875259

RESUMO

Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.

11.
Transl Vis Sci Technol ; 8(6): 22, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788351

RESUMO

Purpose: To investigate the association between changes in arterial blood gases and intraocular pressure (IOP) after acute, short-term exposure to simulated elevation of 4000 m above sea level. Methods: Twenty-five healthy young lowlanders participated in this prospective study. IOP was measured in both eyes with an Accupen tonometer. Arterial blood gas parameters (partial oxygen pressure [PaO2], partial carbon dioxide pressure [PaCO2], pH, and bicarbonate ion [HCO3 -]) were checked using a blood gas analyzer. Measurements were taken at sea level (T1), at 15-minute (T2) and at 2-hour (T3) exposure times to simulated 4000 m above sea level in a hypobaric chamber, and upon return to sea level (T4). Associations between arterial blood gas parameters and IOP were evaluated using multivariate linear regression. Results: PaO2 significantly decreased at T2 and T3, resolving at T4 (P < 0.001). pH significantly increased at T2 and returned to baseline at T3 (P = 0.004). Actual and standard bicarbonate ion both dropped with IOP at T3 and T4. IOP significantly decreased from 16.4 ± 3.4 mm Hg at T1 to 15.1 ± 2.1 mm Hg (P = 0.041) at T3 and remained lower (14.9 ± 2.4 mm Hg; P = 0.029) at T4. IOP was not correlated with pH. Multivariate linear regression showed that lower IOP was associated with lower standard bicarbonate ion (beta = -1.061; 95% confidence interval, -0.049 to -2.074; P = 0.04) when adjusted for actual bicarbonate and diastolic blood pressure. Conclusions: Hypobaric hypoxia triggers plasma bicarbonate ion reduction which, rather than pH, may decrease aqueous humor formation and subsequently cause IOP reduction. These findings may shed light on the mechanism of IOP regulation at high altitude. Translational Relevance: Hypoxia-triggered reduction in plasma bicarbonate ion may decrease aqueous humor production, leading to IOP reduction at high altitude. These findings may provide new insight into a potential mechanism of IOP regulation. Hypobaric hypoxia at high altitude is an environmental factor that can reduce IOP and, therefore, deserves further study.

12.
Sci Rep ; 9(1): 16864, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728020

RESUMO

Various nickel and magnesium dual-doped LiNixMg0.08Mn1.92-xO4 (x ≤ 0.15) were synthesized via a modified solid-state combustion method. All as-prepared samples show typical spinel phase with a well-defined polyhedron morphology. The Ni-Mg dual-doping obviously decreases the lattice parameter that gives rise to the lattice contraction. Owing to the synergistic merits of metal ions co-doping, the optimized LiNi0.03Mg0.08Mn1.89O4 delivers high initial capacity of 115.9 and 92.9 mAh·g-1, whilst retains 77.1 and 69.7 mAh·g-1 after 1000 cycles at 1 C and high current rate of 20 C, respectively. Even at 10 C and 55 °C, the LiNi0.03Mg0.08Mn1.89O4 also has a discharge capacity of 92.2 mAh·g-1 and endures 500 cycles long-term life. Such excellent results are contributed to the fast Li+ diffusion and robust structure stability. The anatomical analysis of the 1000 long-cycled LiNi0.03Mg0.08Mn1.89O4 electrode further demonstrates the stable spinel structure via the mitigation of Jahn-Teller effect. Hence, the Ni-Mg co-doping can be a potential strategy to improve the high-rate capability and long cycle properties of cathode materials.

13.
Toxicology ; 428: 152304, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586597

RESUMO

Zearalenone (ZEA), one of the mycotoxins widely found in food and feed, can stimulate an inflammatory reaction. In the present study, we demonstrated that ZEA induced the activation of NLRP3 inflammasome even pyroptotic cell death in rat Insulinoma Cell Line (INS-1). Meanwhile, according to the results of western blot and TEM, the level of autophagy was elevated by ZEA, which protected against the activation of NLRP3 inflammasome and inflammatory response caused by ZEA. Furthermore, we indicated that ZEA-induced NF-κB p65 activation contributed to the activation of the NLRP3 inflammasome, inflammatory response, and pyroptosis in INS-1 cells, which were indicated by western blot and immunofluorescence, and the activation of NF-κB p65 induced by ZEA was autophagy-dependent. This study demonstrates that ZEA induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells.

14.
Viruses ; 11(10)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590347

RESUMO

During entry, a virus must be transported through the endomembrane system of the host cell, penetrate a cellular membrane, and undergo capsid disassembly, to reach the cytosol and often the nucleus in order to cause infection. To do so requires the virus to coordinately exploit the action of cellular membrane transport, penetration, and disassembly machineries. How this is accomplished remains enigmatic for many viruses, especially for viruses belonging to the nonenveloped virus family. In this review, we present the current model describing infectious entry of the nonenveloped polyomavirus (PyV) SV40. Insights from SV40 entry are likely to provide strategies to combat PyV-induced diseases, and to illuminate cellular trafficking, membrane transport, and disassembly mechanisms.

15.
ACS Appl Mater Interfaces ; 11(46): 43188-43199, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31644871

RESUMO

To address the challenge of high-temperature air filtration, a novel electreted polysulfonamide/polyacrylonitrile-boehmite (PSA/PAN-B) composite nanofiber based filter was developed via electrospinning for effective high-temperature dust removal. In this study, the spinnability of PSA was greatly improved by adding a small amount of PAN as an auxiliary polymer, and the introduction of a boehmite electret further significantly reinforced the properties of PSA fibers. As a result, the PSA/PAN-B membrane exhibited a high filtration efficiency (up to 99.52 ± 0.32%), low pressure drop (45.16 ± 1.39 Pa), excellent flexibility, good mechanical properties, high thermal stability (up to approximately 300 °C), and superior chemical resistance. Through data analysis and 3D simulation, the important benefits of the boehmite electret in the optimization of the PSA fibrous membrane performance were determined: it increases the charge storage capacity, constructs a rough surface morphology, improves the specific surface area, and enhances the mechanical properties. More importantly, the PSA/PAN-B film possessed a robust PM2.5 purification capacity, and the particulate matter removal efficiency was kept unchanged after high-temperature, acid, or alkali treatment-a performance derived from the intrinsic molecular structure of PSA. The PSA/PAN-B composite fibrous membrane, with excellent comprehensive properties, is a promising candidate for air filters, especially in harsh environments, further broadening the applications of PSA and providing new insight into the design of high-performance filters with high-temperature and corrosion resistance.

16.
Allergy Asthma Immunol Res ; 11(6): 830-845, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31552718

RESUMO

PURPOSE: Chronic cough in allergic rhinitis (AR) patients is common with multiple etiologies including cough variant asthma (CVA), non-asthmatic eosinophilic bronchitis (NAEB), gastroesophageal reflux-related cough (GERC), and upper airway cough syndrome (UACS). Practical indicators that distinguish these categories are lacking. We aimed to explore the diagnostic value of the fraction of exhaled nitric oxide (FeNO) and forced expiratory flow at 25% and 75% of pulmonary volume (FEF25-75) in specifically identifying CVA and NAEB in these patients. METHODS: Consecutive AR patients with chronic cough were screened and underwent induced sputum, FeNO, nasal nitric oxide, spirometry, and methacholine bronchial provocation testing. All patients also completed gastroesophageal reflux disease questionnaires. RESULTS: Among 1,680 AR patients, 324 (19.3%) were identified with chronic cough, of whom 316 (97.5%) underwent etiology analyses. Overall, 87 (27.5%) patients had chronic cough caused by NAEB, 78 (24.7%) by CVA, 16 (5.1%) by GERC, and 81 (25.6%) by UACS. Patients with either NAEB or CVA (n = 165, in total) were further assigned to a common group designated as CVA/NAEB, because they both responded to corticosteroid therapy. Receiver operating characteristic curves of FeNO revealed obvious differences among CVA, NAEB, and CVA/NAEB (area under the curve = 0.855, 0.699, and 0.923, respectively). The cutoff values of FeNO at 43.5 and 32.5 ppb were shown to best differentiate CVA and CVA/NAEB, respectively. FEF25-75 was significantly lower in patients with CVA than in those with other causes. A FEF25-75 value of 74.6% showed good sensitivity and specificity for identifying patients with CVA. CONCLUSIONS: NAEB, CVA, and UACS are common causes of chronic cough in patients with AR. FeNO can first be used to discriminate patients with CVA/NAEB, then FEF25-75 (or combined with FeNO) can further discriminate patients with CVA from those with CVA/NAEB.

17.
ACS Appl Mater Interfaces ; 11(38): 35264-35269, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31486631

RESUMO

The growth of lithium peroxide (Li2O2) in cathodes determines the performance of lithium-oxygen batteries (LOBs). The factor affecting the Li2O2 growth position is of great importance. Here, three hollow carbon spheres with diameters of 200 nm, 500 nm, and 2 µm, corresponding to different curvatures of 10, 4, and 1, respectively, are prepared as LOB cathodes. It is found that the larger the curvature, the more difficult it is for Li2O2 to grow inside the hollow sphere. Increasing the discharge current density can promote the growth of Li2O2 onto a highly curved concave substrate. Therefore, to maximize the battery performance, the applied current density and the local curvature of the porous cathode need to match to optimize the pore space utilization and meanwhile to enhance the interface charge transfer between Li2O2 and electrode. The revealed relationship among the local curvature of the porous electrode, Li2O2 deposition position, and battery performance is valuable to the topography design of the LOB cathode.

18.
J Colloid Interface Sci ; 555: 64-71, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376769

RESUMO

The improvements of cyclability and rate capability of lithium ion batteries with spinel LiMn2O4 as cathode are imperative demands for the large-scale practical applications. Herein, a nickel (Ni) and magnesium (Mg) co-doping strategy was employed to synthesize LiNi0.03Mg0.05Mn1.92O4 cathode material via a facile solid-state combustion approach. The effects of the Ni-Mg co-doping on crystalline structure, micromorphology and electrochemical behaviors of the as-prepared LiNi0.03Mg0.05Mn1.92O4 are investigated by a series of physico-chemical characterizations and performance tests at high-rate and elevated-temperature. The resultant LiNi0.03Mg0.05Mn1.92O4 has the intrinsic spinel structure with no any impurities, and exhibits an elevated average valence of manganese in comparison to the pristine LiMn2O4. Owing to the Ni and Mg dual-doped merits, the LiNi0.03Mg0.05Mn1.92O4 sample demonstrates a robust spinel structure and high first discharge specific capacity of 112.3 mAh g-1, whilst undergoing a long cycling of 1000 cycles at 1 C. At a high current rate of 20 C, the capacity of 91.2 mAh g-1 with an excellent retention of 77% is obtained after 1000 cycles. Even at 10 C under 55 °C, an excellent capacity of 97.6 mAh g-1 is also delivered. These results offer a new opportunity for developing high-performance lithium ion batteries with respect to the Ni-Mg co-doping strategy.

19.
Oncogene ; 38(43): 6940-6957, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409905

RESUMO

ZFP42 zinc finger protein (REX1), a pluripotency marker in mouse pluripotent stem cells, has been identified as a tumor suppressor in several human cancers. However, the function of REX1 in cervical cancer remains unknown. Both IHC and western blot assays demonstrated that the expression of REX1 protein in cervical cancer tissue was much higher than that in normal cervical tissue. A xenograft assay showed that REX1 overexpression in SiHa and HeLa cells facilitated distant metastasis but did not significantly affect tumor formation in vivo. In addition, in vitro cell migration and invasion capabilities were also promoted by REX1. Mechanistically, REX1 overexpression induced epithelial-to-mesenchymal transition (EMT) by upregulating VIMENTIN and downregulating E-CADHERIN. Furthermore, the JAK2/STAT3-signaling pathway was activated in REX1-overexpressing cells, which also exhibited increased levels of p-STAT3 and p-JAK2, as well as downregulated expression of SOCS1, which is an inhibitor of the JAK2/STAT3-signaling pathway, at both the transcriptional and translational levels. A dual-luciferase reporter assay and qChIP assays confirmed that REX1 trans-suppressed the expression of SOCS1 by binding to two specific regions of the SOCS1 promoter. Therefore, all our data suggest that REX1 overexpression could play a crucial role in the metastasis and invasion of cervical cancer by upregulating the activity of the JAK2/STAT3 pathway by trans-suppressing SOCS1 expression.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Kruppel-Like/genética , Metástase Neoplásica/genética , Transdução de Sinais/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Animais , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/patologia , Biossíntese de Proteínas/genética , Fator de Transcrição STAT3/genética , Transcrição Genética/genética , Regulação para Cima/genética , Vimentina/genética
20.
World J Gastrointest Oncol ; 11(8): 642-651, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31435465

RESUMO

BACKGROUND: The Borrmann classification system is used to describe the macroscopic appearance of advanced gastric cancer, and Borrmann type IV disease is independently associated with a poor prognosis. AIM: To evaluate the prognostic significance of lymphatic and/or blood vessel invasion (LBVI) combined with the Borrmann type in advanced proximal gastric cancer (APGC). METHODS: The clinicopathological and survival data of 440 patients with APGC who underwent curative surgery between 2005 and 2012 were retrospectively analyzed. RESULTS: In these 440 patients, LBVI+ status was associated with Borrmann type IV, low histological grade, large tumor size, and advanced pT and pN status. The 5-year survival rate of LBVI+ patients was significantly lower than that of LBVI- patients, although LBVI was not an independent prognostic factor in the multivariate analysis. No significant difference in the prognosis of patients with Borrmann type III/LBVI+ disease and patients with Borrmann type IV disease was observed. Therefore, we proposed a revised Borrmann type IV (r-Bor IV) as Borrmann type III plus LBVI+, and found that r-Bor IV was associated with poor prognosis in patients with APGC, which outweighed the prognostic significance of pT status. CONCLUSION: LBVI is related to the prognosis of APGC, but is not an independent prognostic factor. LBVI status can be used to differentiate Borrmann types III and IV, and the same approach can be used to treat r-Bor IV and Borrmann type IV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA