Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 206: 112722, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32823004

RESUMO

Phthalide is a promising chemical scaffold and has been proved to show potent anti-inflammatory efficacy. In this study, three series, total of 31 novel phthalide derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. The anti-inflammatory activity of all the compounds were screened on LPS induced NO production to evaluating their inhibitory effects. Structure-activity relationship has been concluded, and finally 3-((4-((4-fluorobenzyl)oxy)phenyl)(hydroxy)methyl)-5,7-dimethoxyisobenzofuran-1 (3H)-one (compound 9o) was found to be the active one with low toxicity, which showed 95.23% inhibitory rate at 10 µM with IC50 value of 0.76 µM against LPS-induced NO over expression. Preliminary mechanism studies indicated that compound 9o activated Nrf2/HO-1 signaling pathway via accumulation ROS and blocks the NF-κB/MAPK signaling pathway. The in vivo anti-inflammatory activity shown that compound 9o had obvious therapeutic effect against the adjuvant-induced rat arthritis model.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32779303

RESUMO

By leveraging the ability of Shewanella oneidensis MR-1 (S. oneidensis MR-1) to anaerobically catabolize lactate through the transfer of electrons to metal minerals for respiration, a lactate-fueled biohybrid (Bac@MnO2 ) was constructed by modifying manganese dioxide (MnO2 ) nanoflowers on the S. oneidensis MR-1 surface. The biohybrid Bac@MnO2 uses decorated MnO2 nanoflowers as electron receptor and the tumor metabolite lactate as electron donor to make a complete bacterial respiration pathway at the tumor sites, which results in the continuous catabolism of intercellular lactate. Additionally, decorated MnO2 nanoflowers can also catalyze the conversion of endogenous hydrogen peroxide (H2 O2 ) into generate oxygen (O2 ), which could prevent lactate production by downregulating hypoxia-inducible factor-1α (HIF-1α) expression. As lactate plays a critical role in tumor development, the biohybrid Bac@MnO2 could significantly inhibit tumor progression by coupling bacteria respiration with tumor metabolism.

3.
Bioorg Chem ; 102: 104077, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32682156

RESUMO

Telomerase has become one of the new popular targets for the development of anti-tumor drugs. Based on the structural characteristics of the BIBR1532 which has entered the stage of clinical research, six series total of 64 new compounds with diverse structural characteristics were designed and synthesized. The inhibitory activity against SGC-7901, MGC-803, SMMC-7721, A375 and GES cell lines and their telomerase inhibitory activity were tested. Among them, eight compounds showed good activity against cancer cells, among them compounds 56, 57 and 59 also showed low toxicity. Some of them showed excellent telomerase inhibitory activity with IC50 values ranging from 0.62 µM to 8.87 µM. Based on above, in depth structure-activity relationships were summarized, the compounds by replacing methyl group with cyanide and retaining amide moiety had good anti-tumor activity, moderate cytotoxicity, and better telomerase inhibitory activity. The results should be used for reference in BIBR1532-based structural optimization for further development of small molecule telomerase inhibitors.

4.
Bioorg Chem ; 98: 103735, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171986

RESUMO

Paeonol has been proved to have potential anti-inflammatory activity, but its clinical application is not extensive due to the poor anti-inflammatory activity (14.74% inhibitory activity at 20 µM). In order to discover novel lead compound with high anti-inflammatory activity, series of paeonol derivatives were designed and synthesized, their anti-inflammatory activities were screened in vitro and in vivo. Structure-activity relationships (SARs) have been fully concluded, and finally (E)-N-(4-(2-acetyl-5-methoxyphenoxy)phenyl)-3-(3,4,5-trimet-hoxyphenyl)acrylamide (compound 11a) was found to be the best active compound with low toxicity, which showed 96.32% inhibitory activity at 20 µM and IC50 value of 6.96 µM against LPS-induced over expression of nitric oxide (NO) in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4, resulting in inhibiting of NF-κB and MAPK pathways. Further studies have shown that compound 11a has obvious therapeutic effect against the adjuvant-induced rat arthritis model.

5.
Bioorg Chem ; 96: 103624, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32078847

RESUMO

A major goal of medicinal chemists is to identify and validate novel and effective kinase targets for treatment of cancer. Recent studies have shown that cyclin-dependent kinase 8 (CDK8) is a target for treatment of colorectal, breast, melanoma, and prostate cancers. The crystal structure of CDK8 has been reported, and eutectic interactions have been identified for 24 compounds that target CDK8. To more effectively develop CDK8 inhibitors, particularly those with improved selectivity, we summarized the structure, structure-activity relationships, and binding information of typical CDK8 inhibitors, which may serve as a reference for development of novel CDK8 inhibitors.

6.
Bioorg Chem ; 96: 103597, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028063

RESUMO

Some important pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α and nitric oxide are thought to play key roles in the destruction of cartilage and bone tissue in joints affected by rheumatoid arthritis. In the present study, a series of new myricetin-pentadienone hybrids were designed and synthesized. Majority of them effectively inhibited the expressions liposaccharide-induced secretion of IL-6, TNF-α and NO in RAW264.7. The most prominent compound 5o could significantly decrease production of above inflammatory factors with IC50 values of 5.22 µM, 8.22 µM and 9.31 µM, respectively. Preliminary mechanism studies indicated that it could inhibit the expression of thioredoxin reductase, resulting in inhibiting of cell signaling pathway nuclear factor (N-κB) and mitogen-activated protein kinases. Significantly, compound 5o was found to effectively inhibit Freund's complete adjuvant induced rat adjuvant arthritis in vivo.

7.
Med Res Rev ; 40(2): 532-585, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31361345

RESUMO

Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.

8.
Chin J Integr Med ; 26(2): 152-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31069695

RESUMO

Leonurus japonicus Houtt, a Chinese traditional herbal medicine, has been widely used to cure gynecological diseases, such as incomplete abortion and menoxenia. Leonurine, a major active alkaloid compound only be found in Leonurus japonicus Houtt, has been successfully extracted and purified. Recent evidence has shown that leonurine can regulate a variety of pathologic processes including oxidative stress, inflammation, fibrosis, apoptosis, and multiple metabolic disorders. Here, we have reviewed the pharmacological actions and biological functions of leonurine, with a focus on the role of leonurine in the amelioration of various pathological processes. Insights into the related signaling pathways and molecular mechanisms have strengthened our understanding on the function of leonurine in the alleviation of multiple pathological states. Our summary of the existing researches should help direct future research into the basic science and clinical applications in related diseases.

9.
Parasitol Res ; 118(10): 3099-3103, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486945

RESUMO

Myxobolus pelecicola Voronin et Dudin, 2015 was recently described from the skeletal musculature of sichel Pelecus cultratus. However, another species, Myxobolus ladogensis Rumyantsev et Schulman, 1997, was described previously from the same host, displaying identical tissue localization and spore morphology as in M. pelecicola. Unfortunately, M. ladogensis was overlooked when M. pelecicola was described, resulting in the superfluous description of the latter species, which, according to the International Code of Zoological Nomenclature, is a junior synonym of M. ladogensis. The description of M. ladogensis is supplemented with SSU rDNA sequence analysis supporting the conspecificity with M. pelecicola. The closest relatives of Myxobolus ladogensis (syn. M. pelecicola) include several muscle-infecting Myxobolus spp. with sequence similarity below 97%.


Assuntos
Cyprinidae/parasitologia , Doenças dos Peixes/parasitologia , Músculo Esquelético/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Animais , DNA Ribossômico/genética , Myxobolus/genética , Filogenia , Federação Russa , Esporos
10.
PhytoKeys ; 130: 59-73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534395

RESUMO

Gentianella macrosperma Ma ex H.F. Cao, J.D. Ya & Q.R. Zhang, a new species of Gentianaceae from Xinjiang, Northwest China is described and illustrated. This new species is unique in having equal length of corolla lobe and corolla tube, nectaries located at the throat of the corolla tube and large seeds up to 1.6 mm in diameter. In addition, an updated identification key to the Chinese species of Gentianella is provided.

11.
Nano Lett ; 19(11): 8049-8058, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31558023

RESUMO

Pyroptosis is a lytic and inflammatory form of programmed cell death and could be induced by chemotherapy drugs via caspase-3 mediation. However, the key protein gasdermin E (GSDME, translated by the DFNA5 gene) during the caspase-3-mediated pyroptosis process is absent in most tumor cells because of the hypermethylation of DFNA5 (deafness autosomal dominant 5) gene. Here, we develop a strategy of combining decitabine (DAC) with chemotherapy nanodrugs to trigger pyroptosis of tumor cells by epigenetics, further enhancing the immunological effect of chemotherapy. DAC is pre-performed with specific tumor-bearing mice for demethylation of the DFNA5 gene in tumor cells. Subsequently, a commonly used tumor-targeting nanoliposome loaded with cisplatin (LipoDDP) is used to administrate drugs for activating the caspase-3 pathway in tumor cells and trigger pyroptosis. Experiments demonstrate that the reversal of GSDME silencing in tumor cells is achieved and facilitates the occurrence of pyroptosis. According to the anti-tumor activities, anti-metastasis results, and inhibition of recurrence, this pyroptosis-based chemotherapy strategy enhances immunological effects of chemotherapy and also provides an important insight into tumor immunotherapy.

12.
J Enzyme Inhib Med Chem ; 34(1): 1678-1689, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31530032

RESUMO

A series of novel 4-ferrocenylchroman-2-one derivatives were designed and synthesised to discover potent anti-inflammatory agents for treatment of arthritis. All the target compounds had been screened for their anti-inflammatory activity by evaluating the inhibition effect of LPS-induced NO production in RAW 264.7 macrophages. Among them, 4-ferrocenyl-3,4-dihydro-2H-benzo[g]chromen-2-one (3h) was found to be the most potent compound in inhibiting the productions of NO with low toxicity. This compound also exhibited significant inhibition of the productions of IL-6 and TNF-α in RAW 264.7 macrophages. Preliminary mechanism studies indicated that compound 3h could inhibit the activation of LPS-induced NF-κB and MAPKs signalling pathways. The in vivo anti-inflammatory effect of this compound was determined in the rat adjuvant-induced arthritis model.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artrite/tratamento farmacológico , Cromonas/farmacologia , Interleucina-6/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Artrite/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Adjuvante de Freund , Interleucina-6/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , NF-kappa B/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1126-1127: 121737, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377565

RESUMO

Gamboge, a dried resin secreted by Garcinia hanburyi Hook. f. (Guttiferae), possesses remarkable anticancer activity. However, due to toxicity, it must be processed before use in clinics. Xanthones are the main bioactive ingredients in gamboge. In order to elucidate the influence of processing technology on pharmacological properties of gamboge, an efficient, sensitive, and selective ultra-performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-MS/MS) method of five critical xanthones, including ß-morellic acid (ß-MA), isogambogenic acid (IGNA), gambogenic acid (GNA), R-gambogic acid (GA), and S-GA in rat plasma was established for a comparative pharmacokinetics study of these xanthones after oral administration of crude and processed G. hanburyi extracts. The chromatographic separation of these five xanthones along with an internal standard (I.S.) was carried out on a Waters Acquity UPLC BEH C8 column with a gradient elution method using acetonitrile/0.1% formic acid-water as mobile phases. The eluate was detected by multiple-reaction monitoring (MRM) scanning with an electrospray ionization source operating in the positive ionization mode. Sample preparation involved a liquid-liquid extraction of the five analytes with ethyl acetate. Deoxyschizandrin was employed as an internal standard. This assay method was validated for selectivity, linearity, intra-day and inter-day precision, accuracy, recovery, matrix effect, and stability. The results revealed that the calibration curves displayed good linear regression (r > 0.995), and the lower limit of quantification (LLOQ) was <5.52 ng/mL for each analyte. The intra-day and inter-day precision (RSD) of the five xanthones at low, medium, and high levels was <10.58%, and the bias of the accuracy ranged from -8.54 to 10.2%. All other parameters fulfilled the FDA criteria for bioanalytical validation. In addition, the assay was successfully applied to the determination and pharmacokinetic study of these five xanthones after oral administration of crude and processed gamboge. Furthermore, Cmax of GNA and AUC0-t of IGNA were increased significantly (P < 0.05) after processing, while AUC0-t of ß-MA, R-GA, and S-GA decreased remarkably (P < 0.05), which suggested that processing exerted different effects on the absorption of xanthones. The results might be valuable for the clinical reasonable application and understanding the processing mechanism of gamboge.


Assuntos
Garcinia , Extratos Vegetais/farmacocinética , Xantonas/sangue , Xantonas/farmacocinética , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Modelos Lineares , Masculino , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos , Xantonas/química
14.
Physiol Rep ; 7(13): e14152, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31250564

RESUMO

Liver diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are characterized by excess hepatic accumulation of lipid droplets and triglycerides which are associated with defective insulin action. Myostatin (Mstn) and adiponectin, secreted by muscle cells and adipocytes, respectively, play important roles in regulating insulin signaling and energy metabolism. The mechanisms underlying the actions of Mstn and adiponectin remain largely unknown. Moreover, the interactions between Mstn and adiponectin in regulating gene expression critical for fatty acid metabolism and insulin action in hepatocytes have not been investigated. The effects of Mstn and AdipoRon, a synthetic adiponectin receptor agonist that is orally active, alone or in combination, on hepatic gene expression and function was investigated. While Mstn increased fatty acid (FA) accumulation and desensitized cellular responses to insulin, AdipoRon protected against Mstn-induced defects in hepatic gene expression and function. In addition, these effects of Mstn were associated with reduced AMPK and PPARα activities which were reversed by AdipoRon. Finally, AdipoRon was able to prevent Mstn-induced activation of the Smad2/3 pathway. These data suggest crosstalk between Mstn-induced Smad2/3 and adiponectin-induced AMPK/PPARα pathways, which may play important roles in the regulation of hepatic gene expression critical for FA metabolism and insulin signaling. In addition, the data suggest that AdipoRon, as an adiponectin receptor agonist, may serve a therapeutic role to reduce the hepatic contribution to the disorders of fat metabolism and insulin action.

15.
Curr Top Med Chem ; 19(15): 1305-1317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218960

RESUMO

STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.


Assuntos
Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Inflamação/metabolismo , Estrutura Molecular , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/química
16.
Eur J Med Chem ; 175: 114-128, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077997

RESUMO

In order to discover novel anti-inflammatory agents, total thirty-seven new resveratrol-based flavonol derivatives were designed and synthesized. All compounds have been screened for their anti-inflammatory activity by evaluating their inhibition effect of LPS-induced NO production in RAW 264.7 macrophages. Their toxicity was also assessed in vitro. Structure-activity relationships (SARs) have been concluded, and finally 2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-4H-chromen-4-one was found to be the most active scaffold with low toxicity. This compound could significantly decrease productions of NO, IL-6 and TNF-α with IC50 values of 1.35, 1.12 and 1.92 µM, respectively in RAW 264.7 macrophages. Preliminary mechanism studies indicated that it could inhibit the expression of TLR4 protein, resulting in activation of the NF-ĸB cell signaling pathway. The in vivo anti-inflammatory activity of this compound could reduce pulmonary inflammation by mouse model of LPS-induced acute lung injury (ALI). We believe these findings would further support studies of rational design of more efficient acute lung injury regulatory inhibitors.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Flavonoides/síntese química , Flavonoides/farmacologia , Interleucina-6/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Resveratrol/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/toxicidade , Flavonoides/química , Flavonoides/toxicidade , Técnicas In Vitro , Concentração Inibidora 50 , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
J Med Chem ; 62(8): 4013-4031, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30925056

RESUMO

In order to discover novel anti-inflammatory agents for treatment of arthritis and based on preliminary structure-activity relationships, four series (A-D) of total 90 new pyrazolo[4,3- d]pyrimidine compounds were designed and synthesized. All the compounds have been tested for their anti-inflammatory activities by inhibiting of LPS-induced NO production. A clear structure-activity relationship has been concluded step by step, and finally 3,4,5-trimethoxystyryl-1 H-pyrazolo[4,3- d]pyrimidine was found to be the most active scaffold. Among them, compound D27 was discovered as the most potent anti-inflammatory agent (IC50 = 3.17 µM) with low toxicity and strong inhibitory of NO release (IR = 90.4% at 10 µM). This compound also showed potent inhibition of iNOS with IC50 value of 1.12 µM. Preliminary mechanism studies indicated that it could interfere with the stability and formation of active dimeric iNOS. The anti-inflammatory effect of this compound was determined by adjuvant-induced arthritis in rat model. We believe these findings would further support the study of rational design of more efficient iNOS inhibitors in the future.

18.
FASEB J ; 33(6): 7603-7614, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30892941

RESUMO

Vascular aging has a strong relationship with cardiovascular disease. Fos-related antigen 1 (Fra-1), also referred to as Fos-like antigen 1, is a transcription factor and has been reported to be involved in many pathologic processes. Here, we demonstrate that Fra-1 plays a critical role in angiotensin II (Ang II)-induced vascular senescence. Fra-1 expression is increased significantly in Ang II-induced rat aortic endothelial cell (RAEC) senescence and the arteries from Ang II-infused mice. Interestingly, silencing Fra-1 blocks Ang II-induced senescence phenotypes in RAECs, including decreased senescence-associated ß-galactosidase staining, and mitigated proliferation suppression and senescence-associated secretory phenotype. Further, knocking down Fra-1 inhibits vascular aging phenotypes in an Ang II-infused mice model. The up-regulated Fra-1 also exists in human atherosclerotic plaques and Ang II-induced vascular smooth muscle cells as well as in replicated senescence RAECs. Mechanistic studies reveal that Fra-1 preferentially associates with c-Jun and binds to the cyclin-dependent kinase inhibitor 1a (p21) and cyclin-dependent kinase inhibitor 2a (p16) promoter region, leading to elevated gene expression, which causes senescence-related phenotypes. In conclusion, our results identify that Fra-1 plays a novel and key role in promoting vascular aging by directly binding and transcriptionally activating p21 and p16 signaling, suggesting intervention of Fra-1 is a potential strategy for preventing aging-associated cardiovascular disorders.-Yang, D., Xiao, C., Long, F., Wu, W., Huang, M., Qu, L., Liu, X., Zhu, Y. Fra-1 plays a critical role in angiotensin II-induced vascular senescence.

19.
Biomed Pharmacother ; 113: 108747, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849638

RESUMO

Eleven dihydroxy-2-(1-hydroxy-4-methylpent-3-enyl)naphthalene derivatives as anticancer agents through regulating cell autophagy were designed and synthesized. The anticancer activity results indicated that most compounds manifested obvious un-toxic effect on GES-1 and L-02 with IC50 from 0.58 to 1.41 mM. Among them, (S,Z)-1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 4-(3,4- dihydroisoquinolin-2(1 H)-yl)-4-oxobut-2-enoate (compound 4i) could induce cancer cells apoptosis. Further experiments showed that autophagy played an important role in the pro-apoptotic effect of this compound. Preliminary mechanism indicated that this compound could inhibit phosphoinositide 3-kinase/protein kinase B and the mammalian target of rapamycin (PI3K/AKT/mTOR) pathway by mediating apoptosis in an autophagy-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Naftalenos/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Naftalenos/síntese química , Naftalenos/química , Neoplasias/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
20.
Adv Mater ; 31(16): e1808278, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30803049

RESUMO

Synthetic biology based on bacteria has been displayed in antitumor therapy and shown good performance. In this study, an engineered bacterium Escherichia coli MG1655 is designed with NDH-2 enzyme (respiratory chain enzyme II) overexpression (Ec-pE), which can colonize in tumor regions and increase localized H2 O2 generation. Following from this, magnetic Fe3 O4 nanoparticles are covalently linked to bacteria to act as a catalyst for a Fenton-like reaction, which converts H2 O2 to toxic hydroxyl radicals (•OH) for tumor therapy. In this constructed bioreactor, the Fenton-like reaction occurs with sustainably synthesized H2 O2 produced by engineered bacteria, and severe tumor apoptosis is induced via the produced toxic •OH. These results show that this bioreactor can achieve effective tumor colonization, and realize a self-supplied therapeutic Fenton-like reaction without additional H2 O2 provision.


Assuntos
Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Neoplasias/terapia , Animais , Apoptose , Reatores Biológicos , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nanopartículas de Magnetita/química , Camundongos Endogâmicos BALB C , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA