RESUMO
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
RESUMO
This study developed an edible antimicrobial coating using a blend of konjac glucomannan (KGM) and low acyl gellan gum (LAG) hydrogel to incorporate thymol nanoparticles (TKL). The optimized TKL formulation (TKL60) comprised 0.22% thymol microcapsules (TMs), 0.075% total polysaccharide content (KGM:LAG = 1:2), and 99.63% distilled water. When applied to blueberries, TKL60 significantly extended their shelf life to 42 d at 2 ± 0.5 °C, tripling that of control fruit. TKL60 reduced decay rate, weight loss, and respiration rate, delayed softening and senescence during cold storage. It preserved the outer epidermis by retaining cuticular waxes, curbing lipid oxidation, and sustaining defense-related enzyme activities. Flavor analysis revealed altered volatile compound concentrations in TKL60-treated berries, including decreased terpenes and benzaldehyde, and increased esters and aldehydes like 2-methylbutanol, 3-methylbutanol, and linalool. Discriminant Analysis highlighted TKL60's efficacy in delaying aroma deterioration by over 21 d. TKL60 exhibits potential as a substitute for synthetic coatings and chemical insecticides.
Assuntos
Amorphophallus , Mirtilos Azuis (Planta) , Filmes Comestíveis , Timol , Mirtilos Azuis (Planta)/química , Glucanos , Cápsulas , Polissacarídeos Bacterianos/químicaRESUMO
Senescence is happening in every corner of the living organisms. ß-galactosidase (ß-gal) is one of the most important biomarkers during senescence in both plant and mammalian cells. Most ß-gal fluorescent probes were focused on bio-imaging, only a few probes were developed for the detection of ß-gal in fruit, and the probes that could detect ß-gal in both fruits and living cells were even less. Here, two ß-gal probes (TNap-ßGal and TBNap-ßGal) were synthesized, which can not only image the increase of ß-gal during both fruits softening and cellular senescence, but also prove that bananas are not suitable for storage in refrigerator and the subsequent accumulation of ß-gal still in lysosome of mammalian cells. In addition, TNap-ßGal was successfully applied to two-photon imaging of endogenous ß-gal in both hDPMSCs and tissues of human dental pulp for the first time.
Assuntos
Senescência Celular , Frutas , Humanos , Animais , beta-Galactosidase , Corantes Fluorescentes , Lisossomos , MamíferosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The skin is affected by endogenous and exogenous factors, which are the intuitive consequence expression of aging. Aging not only affects the aesthetics of the skin but also causes the decline of skin functions, leading to many skin diseases and even skin cancer. Anti-aging formula (AAF) has various biological effects such as antioxidants, regulation of intestinal flora metabolism, anti-aging, and memory improvement. However, it is not clarified whether it could be anti-aging of the skin and the anti-aging mechanism. AIM OF THE STUDY: This study aimed to investigate whether AAF could prevent skin from oxidative stress-induced senescence and explore the underlying molecular mechanisms. MATERIALS AND METHODS: A mouse skin oxidative stress aging model was established based on ultraviolet (UV) irradiation, and parameters such as skin water content, melanogenesis, wrinkle production, pathological changes, and aging marker proteins were measured to elucidate whether AAF has an anti-aging effect on the skin. Subsequently, transcriptome sequencing (RNA-Seq) was used to identify target genes. An in vitro cellular senescence model was established to assess the role of AAF against cellular oxidative stress senescence by detecting senescence-related markers, while the specific mechanism of action of AAF in delaying skin senescence was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments demonstrated that AAF significantly increased skin water content, reduced skin sensitivity and melanin content, slowed wrinkles, improved UV-induced epidermal thickening, increased collagen fiber content, improved elastic fiber morphology, and reduced the expression of senescence proteins P21 and P16 in skin tissues. The RNA-Seq results identified chemokine receptor 2 (CXCR2) as one of the potential targets for delaying skin senescence. In vitro experiments showed that AAF markedly improved the aging phenotype, and knockdown or overexpression experiments verified the essential role of CXCR2 in the skin senescence process. Mechanistic studies suggested that AAF inhibited the P38/P53 pathway by reducing CXCR2 expression, which improved the aging phenotype, reduced oxidative damage, and ultimately delayed cellular senescence. CONCLUSION: The results reveal that AAF protects skin from oxidative stress-induced senescence by regulating the expression of critical target CXCR2, reducing P38 protein phosphorylation, and inhibiting P53 pathway activation. These discoveries implicate the potential of AAF in the protection of skin aging disease.
Assuntos
Estresse Oxidativo , Proteína Supressora de Tumor p53 , Animais , Camundongos , Envelhecimento , Pele , Senescência Celular , Modelos Animais de DoençasRESUMO
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
RESUMO
The effects of high pressure homogenization (HPH) at different pressures (50, 100, 150 and 200 MPa) and temperatures (4, 20, 40, 60 and 80 °C) on the interaction between corn starch (CS) and cyanidin-3-O-glucoside (C3G) were investigated. Based on analyses of zeta potential, attenuated total reflection-flourier transformed infrared spectroscopy and binding rate after adding shielding agents, the main interaction force changed from electrostatic interaction to hydrogen bonds. In comparison, the interaction between CS and C3G exhibited greater strength at low temperatures and pressures. Especially, 4 °C/50 MPa HPH caused the most significant enhancement in binding rate and binding amount, from 9.56 % to 25.16 % and 0.96 µg/mg CS to 2.52 µg/mg CS, respectively. At this condition, the specific surface area of CS-C3G increased from 433.57 ± 0.91 m2/kg to 440.93 ± 1.01 m2/kg. Surface fluorescence reduction was observed by confocal laser scanning microscopy, further X-ray diffraction patterns indicated the retention of partial spatial structure. Therefore, HPH opened the entry channels, increased contact area and preserved steric hindrance, which increased hydrogen bonding sites. At high temperatures and high pressures (> 40 °C, > 100 MPa), the increasing free starch chains provided new hydrogen bonding sites. Overall, HPH was an effective method to enhance the interaction by affecting starch structure.
RESUMO
Drought is a destructive natural disaster in the Western Sichuan Plateau. Understanding its spatiotemporal variations has important practical significance for drought prevention, ensuring agricultural production safety, and maintaining ecosystem health in the region. Based on the daily meteorological data from 48 meteorological stations in the Western Sichuan Plateau from 1980 to 2020, we used the Penman-Monteith model to calculate potential evapotranspiration and standardized precipitation evapotranspiration index (SPEI). The temporal and spatial variations of drought in the Western Sichuan Plateau were analyzed using linear trend analysis and drought characteristics analysis methods. The results showed that the annual and spring SPEI of the Western Sichuan Plateau showed a weak wetting trend from 1980 to 2020, while summer, autumn, and winter showed a drought trend. The southwest mountains and northeast grasslands in the study region were prone to drought. The range of interannual drought impact in the study area was weakly increasing, with a decreasing trend in spring and an increasing trend in summer, autumn, and winter. The overall drought frequency in the whole region was relatively high. The areas drought of low-frequency were mainly located in parts of west and northeast of the Western Sichuan Plateau, while the rest were high frequency areas.
Assuntos
Secas , Ecossistema , Agricultura , Meteorologia , Estações do AnoRESUMO
Understanding the responses of soil bacterial community to long-term fertilization in dryland of yellow soil could provide theoretical basis for establishing scientific fertilization system and cultivating healthy soil. Based on a 25-year long-term fertilization experiment on yellow soil, we collected soil samples from 0-20 cm layer under different fertilization treatments: no fertilization (CK), balanced application of N, P and K fertilizers (NPK), single application of organic fertilizer (M), combined application of constant organic and inorganic fertilizer (MNPK), and 1/2 organic fertilizer instead of 1/2 chemical fertilizer (MNP). Illumina MiSeq high-throughput sequencing technology was used to examine the effects of different fertilization patterns on soil bacterial community structure and soil nutrient content. The main driving factors of soil bacterial community were explored. The results showed that soil pH and organic matter content under treatments with organic fertilizer increased by 11.4%-13.5% and 28.8%-52.0%, respectively, compared to that under NPK treatment. Long-term fertilization did not affect soil bacterial α diversity, but significantly affected soil bacterial ß diversity. Compared with CK and NPK treatment, treatments of M, MNP, and MNPK significantly changed soil bacterial community structure, and increased the relative abundance of Fusobacteria and Anaerobes. Four fertilization treatments increased the relative abundance of Bacteroidetes, and decreased the relative abundance of Actinomyces and Campylobacter, compared to CK. Soil pH was the most important factor affecting soil bacterial community structure. Fertilization-stimulated rare microbial taxa (Pumilomyces and Anaerobes) were more sensitive to changes in different environmental factors and were the main drivers of the formation of community versatility. In conclusion, organic fertilizer improved soil properties and fertility and changed soil bacterial community structure, which are conducive to cultivating healthy soil.
Assuntos
Fertilidade , Fertilizantes , Sequenciamento de Nucleotídeos em Larga Escala , Nutrientes , SoloRESUMO
The effect of Wnt10b overexpression on adipose tissue development has been reported. However, the impact of Wnt10b knockdown on the function of brown adipose tissue (BAT) is yet largely unknown. Here, we used the CRISPR/Cas9 technique to generate Wnt10b-knockdown (Wnt10b+/- ) mice. We compared the development and thermogenic gene expression of interscapular BAT (iBAT) between Wnt10b+/- and Wnt10b+/+ mice under a chow diet, high-fat diet (HFD), and cold exposure conditions. Moreover, the effect of Wnt10b knockdown on brown adipocyte function was tested via in vitro experiments. Results indicated that Wnt10b knockdown decreased the iBAT mass and the brown adipocyte size and enhanced thermogenic gene expression, including UCP1, under chow diet conditions. In addition, Wnt10b+/- mice appeared to be able to maintain their body temperature better than the control in a cold environment, accompanied by higher UCP1 protein expression. Intriguingly, even under HFD conditions, Wnt10b+/- mice still showed higher UCP1 expression, which was associated with an alleviated obesity phenotype. In vitro studies further evidenced the Wnt10b knockdown stimulation of UCP1 expression and suppression of the adipogenic program. This study indicates that Wnt10b knockdown enhances UCP1 expression and inhibits the adipogenic differentiation of brown adipocytes, providing a novel option for therapeutic interventions in adiposity.
RESUMO
BACKGROUND: This study compared the effectiveness of nalmefene and fentanyl in reducing the incidence and severity of etomidate-induced myoclonus. METHODS: One hundred fifty patients were randomized to receive 0.25ug/kg of nalmefene, 1ug/kg of fentanyl, or the same volume of normal saline 3 minutes prior to etomidate-induced anesthesia. The primary observational indexes were the severity level and incidence of etomidate-induced myoclonus, and the secondary observational index included blood pressure, heart rate, and the incidence of adverse effects from anesthesia induction to resuscitation, such as cough, chest wall rigidity, dizziness, nausea, pain after awakening, and intraoperative awareness. RESULTS: The incidence of myoclonus was significantly lower in the nalmefene group (8.0%) than in the fentanyl group (32.0%) (P = .003) and in the normal saline group (72.0%) (P = .000). The severity level of myoclonus in the nalmefene group was significantly lower than the fentanyl group (P = .001) and normal saline group (P = .000). Meanwhile, the incidences of cough and chest wall rigidity during anesthesia induction were significantly lower in the nalmefene group compared with the fentanyl group (P = .003, P = .027). There were no statistically significant differences in heart rate and mean arterial pressure among the 3 gruops (P > .05). There was no difference in the incidence of adverse effects among the 3 groups during recovery from anesthesia (P > .05). CONCLUSION: Intravenous injection of 0.25ug/kg of nalmefene 3 minutes prior to etomidate is more effective in preventing etomidate-induced myoclonus during general anesthesia than 1ug/kg of fentanyl.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Etomidato , Mioclonia , Humanos , Etomidato/efeitos adversos , Tosse , Mioclonia/induzido quimicamente , Mioclonia/prevenção & controle , Solução Salina , Anestesia Geral , Fentanila/efeitos adversosRESUMO
Translesion synthesis (TLS) is a kind of DNA repair that maintains the stability of the genome and ensures the normal growth of life in cells under emergencies. Y-family DNA polymerases, as a kind of error-prone DNA polymerase, mainly perform TLS. Previous studies have suggested that the occurrence of tumors is associated with the overexpression of human DNA polymerase of the Y family. And the combination of Y-family DNA polymerase inhibitors is promising for cancer therapy. Here we report the functional and structural characterization of a member of the Y-family DNA polymerases, TTEDbh. We determine TTEDbh is an extreme TLS polymerase that can cross oxidative damage sites, and further identify the amino acids and novel structures that are critical for DNA binding, synthesis, fidelity, and oxidative damage bypass. Moreover, previously unnoticed structural elements with important functions have been discovered and analyzed. These studies provide a more experimental basis for further elucidating the molecular mechanisms of DNA polymerase in the Y family. It could also shed light on the design of drugs to target tumors.
RESUMO
Coumarin and its derivatives are plant-derived compounds that exhibit potent insecticidal properties. In this study, we found that natural coumarin significantly inhibited the growth and development of Spodoptera litura larvae through toxicological assay. By transcriptomic sequencing, 80 and 45 differentially expressed genes (DEGs) related to detoxification were identified from 0 to 24 h and 24 to 48 h in S. litura after coumarin treatment, respectively. Enzyme activity analysis showed that CYP450 and acetylcholinesterase (AChE) activities significantly decreased at 48 h after coumarin treatment, while glutathione S-transferases (GST) activity increased at 24 h. Silencing of SlCYP324A16 gene by RNA interference significantly increased S. litura larval mortality and decreased individual weight after treatment with coumarin. Additionally, the expression levels of DEGs involved in glycolysis and tricarboxylic acid (TCA) cycle were inhibited at 24 h after coumarin treatment, while their expression levels were upregulated at 48 h. Furthermore, metabonomics analysis identified 391 differential metabolites involved in purine metabolism, amino acid metabolism, and TCA cycle from 0 to 24 h after treated with coumarin and 352 differential metabolites associated with ATP-binding cassette (ABC) transporters and amino acid metabolism. These results provide an in-depth understanding of the toxicological mechanism of coumarin on S. litura.
Assuntos
Acetilcolinesterase , Ciclo do Ácido Cítrico , Animais , Spodoptera , Cumarínicos/toxicidade , Transportadores de Cassetes de Ligação de ATP , Larva , AminoácidosRESUMO
To overcome the intestinal epithelium barrier and achieve a better antitumor effect, the procedurally targeting flower-like nanomicelles for oral delivery of antitumor drugs were designed based on FAPα-responsive TPGS1000 dimer (TPGS-Gly-Pro-TPGS) and L-carnitine linked poly(2-ethyl-2-oxazoline)-b-poly(D, l-lactide) (Car-PEOz-b-PLA). As expected, compared with unmodified polymeric micelles (TT-PMs) composed of TPGS-Gly-Pro-TPGS, L-carnitine conjugated polymeric micelles (CTT-PMs) formed from both TPGS-Gly-Pro-TPGS and Car-PEOz-b-PLA with favorable stability in simulated gastrointestinal fluid and FAPα-dependent release capability exhibited remarkably enhanced cellular uptake and transmembrane transport through OCTN2 mediation confirmed by fluorescence immunoassay, which was intuitively evidenced by stronger fluorescence within epithelial cells, and the basal side of small intestinal epithelium of mice being given intragastric administration of DiI-labeled micelles. The transport of CTT-PMs across the intestinal epithelium in an intact form was mediated by clathrin along the intracellular transport pathway of endosome-lysosome-ER-Golgi apparatus. Furthermore, both the increased uptake by FAPα-positive U87MG cells and unchangeable uptake by FAPα-negative C6 cells for coumarin-6 (C-6)/CTT-PMs compared with C-6/TT-PMs evidenced the targeting ability of CTT-PMs to FAPα-positive tumor cells. Both OCTN2-mediation and FAPα-responsiveness were beneficial for polymeric micelles to improve the delivery and therapeutic efficiency of antitumor agents, which was further supported by the remarkable enhancement in in vivo antitumor efficacy via promoting apoptosis of tumor cells for paclitaxel (PTX)-loaded CTT-PMs (PTX/CTT-PMs) with low toxicity compared with PTX/TT-PMs. Our findings offered an alternative design strategy for procedurally targeted delivery of chemotherapeutics by an oral route.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. To investigate the effects of resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD (ChiCTR-IOR-15007519) with metagenomics and metabolomics analysis. Relative to the control (n = 97), the RS intervention (n = 99) resulted in a 9.08% absolute reduction of intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss. Serum branched-chain amino acids (BCAAs) and gut microbial species, in particular Bacteroides stercoris, significantly correlated with IHTC and liver enzymes and were reduced by RS. Multi-omics integrative analyses revealed the interplay among gut microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary supplementation might be a strategy for managing NAFLD by altering gut microbiota composition and functionality.
Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Amido Resistente , Triglicerídeos , HumanosRESUMO
Aberrant metabolic disorders and significant glycolytic alterations in tumor tissues and cells are hallmarks of breast cancer (BC) progression. This study aims to elucidate the key biomarkers and pathways mediating abnormal glycolysis in breast cancer using bioinformatics analysis. Differential genes expression analysis, gene ontology analysis, Kyoto encyclopedia of genes and genomes analysis, gene set enrichment analyses, and correlation analysis were performed to explore the expression and prognostic implications of glycolysis-related genes. We effectively integrated 4 genes to construct a prognostic model of shorter survival in the high-risk versus low-risk group. The prognostic model showed promising predictive value and may be an integral part of the prognosis of BC. The survival analysis and receiver operating characteristic curves suggested that the signature showed a good predictive performance in both the The Cancer Genome Atlas training set and 2 gene expression omnibus validation sets. Multivariable analysis demonstrated that the 4-gene signature had an independent prognostic value. Furthermore, all calibration curves exhibited robust validity in prognostic prediction. We established an optimized 4-gene signature to clarify the connection between glycolysis and BC, and offered an attractive platform for risk stratification and prognosis predication of BC patients.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Mama , Biologia Computacional , Glicólise/genéticaRESUMO
Since the Covid-19 epidemic, it has been clear that the availability of small and affordable drugs that are able to efficiently control viral infections in humans is still a challenge in medicinal chemistry. The synthesis and biological activities of a series of hybrid molecules that combine an emodin moiety and other structural moieties expected to act as possible synergistic pharmacophores in a single molecule were studied. Emodin has been reported to block the entry of the SARS-CoV-2 virus into human cells and might also inhibit cytokine production, resulting in the reduction of pulmonary injury induced by SARS-CoV-2. The pharmacophore associated with emodin was either a polyamine residue (emodin-PA series), a choice driven by the fact that a natural alkyl PA like spermine and spermidine play regulatory roles in immune cell functions, or a diphenylmethylpiperazine derivative of the norchlorcyclizine series (emoxyzine series). In fact, diphenylmethylpiperazine antagonists of the H1 histamine receptor display activity against several viruses by multiple interrelated mechanisms. In the emoxyzine series, the most potent drug against SARS-CoV-2 was (R)-emoxyzine-2, with an EC50 value = 1.9 µM, which is in the same range as that of the reference drug remdesivir. However, the selectivity index was rather low, indicating that the dissociation of antiviral potency and cytotoxicity remains a challenge. In addition, since emodin was also reported to be a relatively high-affinity inhibitor of the virulence regulator FIKK kinase from the malaria parasite Plasmodium vivax, the antimalarial activity of the synthesized hybrid compounds has been evaluated. However, these molecules cannot efficiently compete with the currently used antimalarial drugs.
RESUMO
Tibetan antelopes (Pantholopshodgsonii) migrate great distances to specific delivery and calving areas. In the current study, we investigated calving site selection and vigilance behaviour during delivery and nursing in migratory female Tibetan antelopes at Zonag Lake. According to observations and analysis, the females were distributed south of Zonag Lake, where vegetation was abundant. We determined their dates of migration (crossing the Qinghai-Tibet Highway observation site), showing a shift of one month during the period from June in 2008 to May 2021. Results also showed that 81.4% of females expressed high vigilance behaviour during calving and nursing compared to those without calves (7.1%). From delivery until calf standing, females were highly vigilant and spent considerable time scanning, with 96% of females showing vigilance behaviour. Females with calves (average 9.94 ± 0.62 s) spent more time on vigilance behaviour than females without calves (average 6.25 ± 1.38 s). Females with newborns spent the greatest amount of time being vigilant (average 51.63 ± 4.24 s). These results not only identify basic Tibetan antelope calving behaviour, but also provide scientific analysis and evidence for further ethological research on female Tibetan antelopes.
RESUMO
In this study, the cyanidin-3-O-glucoside (C3G)-binding capacities of three native starches were investigated. While potato starch had the largest binding capacity of 0.34 mg/100 mg, corn and pea starch had binding capacities of 0.17 and 0.06 mg/100 mg. Confocal microscopy confirmed the binding results and revealed close associations between the surface properties and binding capacities. These findings were further substantiated with wettability and gelatinization results. The morphological observations showed that corn starch had advantageous particle sizes and more surface gullies, providing more opportunities to bind C3G. The zeta potential results, however, indicated that potato starch had the highest negative surface charges (-24 mV). These favorable electronic characteristics were believed to be responsible for the strongest electrostatic interactions. Hydrogen bonds, however, had a negligible effect on the formation of complexes. Overall, the negative surface charges and specific surface areas of the native starches were the most important factors determining C3G-binding capacities.
RESUMO
Type 2 diabetes mellitus (T2DM) has been the most prevalent disease and has become a serious public health threat worldwide. Gynura bicolor (Willd.) DC. (GB) contains a variety of nutrients and possesses numerous activities, which might benefit those with diabetes. The current study aimed to confirm the improvement of metabolic disorders and explore the potential mechanism of GB in high fat diet-fed (HFD) and streptozotocin (STZ)-induced T2DM mice. The aboveground sample of GB was extracted with alcohol, and identified by highperformance liquid chromatography (HPLC) and liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) analysis. HFD and STZ-induced T2DM mice were administrated with GB extract. Biochemical and histopathologic examinations were conducted, and metabolomics evaluation was performed in serum and urine. GB significantly reduced body weight and liver weight, reversed hyperlipidemia, hyperglycemia, insulin resistance, oxidative stress and inflammation, improved hepatic histopathological changes and lipid deposition and mitigated liver injury in T2DM mice. Serum and urine metabolomics demonstrated a variety of significantly disturbed metabolites in T2DM and these changes were reversed after GB administration, including 13S-hydroxyoctadecadienoic acid, arachidonic acid, L-Valine and so on. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the overlapping enriched pathways in the normal control group and GB group were identified, including linoleic acid metabolism, PPAR signaling pathway, protein digestion and absorption, biosynthesis of amino acids and so on. This study demonstrates that the ethanol extract of GB remarkably attenuates metabolic disorders and maintains the dynamic balance of metabolites in T2DM, providing a scientific basis for GB in the treatment of T2DM and metabolism diseases.