Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
mSphere ; 5(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915212

RESUMO

The survival ability of Salmonella enterica serovar Enteritidis in antibacterial egg white is an important factor leading to Salmonella outbreaks through eggs and egg products. In this study, the role of the gene yoaE, encoding an inner membrane protein, in the survival of Salmonella Enteritidis in egg white, and its transcriptional regulation by CpxR were investigated. Quantitative reverse transcription-PCR (RT-qPCR) results showed that the yoaE gene expression was upregulated 35-fold after exposure to egg white for 4 h compared to that in M9FeS medium, and the deletion of yoaE (ΔyoaE) dramatically decreased the survival rate of bacteria in egg white to less than 1% of the wild type (WT) and the complementary strain at both 37 and 20°C, indicating that yoaE was essential for bacteria to survive in egg white. Furthermore, the ΔyoaE strain was sensitive to a 3-kDa ultrafiltration matrix of egg white because of its high pH and antimicrobial peptide components. Putative conserved binding sites for the envelope stress response regulator CpxR were found in the yoaE promoter region. In vivo, the RT-qPCR assay results showed that the upregulation of yoaE in a ΔcpxR strain in egg white was 1/5 that of the WT. In vitro, results from DNase I footprinting and electrophoretic mobility shift assays further demonstrated that CpxR could directly bind to the yoaE promoter region, and a specific CpxR binding sequence was identified. In conclusion, it was shown for the first time that CpxR positively regulated the transcription of yoaE, which was indispensable for survival of Salmonella Enteritidis in egg white.IMPORTANCE Salmonella enterica serovar Enteritidis is the predominant Salmonella serotype that causes human salmonellosis mainly through contaminated chicken eggs or egg products and has been a global public health threat. The spread and frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival in eggs, despite the antibacterial properties of egg white. Research on the survival mechanisms of S. Enteritidis in egg white will help develop effective strategies to control the contamination of eggs by this Salmonella serotype and help further elucidate the complex antibacterial mechanisms of egg white. This study revealed the importance of yoaE, a gene with unknown function, on the survival of S. Enteritidis in egg white, as well as its transcriptional regulation by CpxR. Our work provides the basis to reveal the mechanisms of survival of S. Enteritidis in egg white and the specific function of the yoaE gene.

2.
Nanoscale ; 12(3): 1801-1810, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31898712

RESUMO

Black titanium dioxide (TiO2) nanoparticles have attracted great attention due to their application in photothermal therapy (PTT). However, single-mode phototherapy has the risk of recurrence, and the high-dose laser usually imposed to improve the PTT performance can bring a potential threat to security. Here, polydopamine (PDA)-coated black TiO2 (b-P25@PDA) nanoparticles with a core-shell structure were synthesized for enhanced PTT; then, synergistic phototherapy nanoprobes (b-P25@PDA-Ce6 (Mn)) were constructed by coupling chlorin e6 (Ce6) and chelating Mn2+ for simultaneous photodynamic therapy (PDT)/PTT and magnetic resonance (MR) imaging, in which a low-dose laser was used and imaging-guided phototherapy with high efficiency and high safety was achieved. The prepared nanoprobes showed high photothermal conversion efficiency (32.12%), high reactive oxygen generation and excellent MR imaging. In the 4T1 tumor-bearing nude mouse model, the tumors completely disappeared under the combination of PDT/PTT with a low-dose laser but were only partially inhibited by single PDT and single PTT. The current work developed a multifunctional black TiO2-based nanoprobe for enhanced synergistic PDT/PTT and MR imaging, which will be important for the safe and efficient visualized theranostics of cancers.

3.
Nanoscale ; 12(3): 2002-2010, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912068

RESUMO

A number of multimodal agents have been developed for tumour imaging and diagnosis, but most of them cannot be used to study the detailed physiological or pathological changes in living cells at the same time. Herein, a series of pH-responsive magnetic resonance and fluorescence imaging (MRI/FI) dual-modal "nanovehicles" are developed and tested. These new dual-modal materials allow for intercellular pH sensing, and those with units that are dually sensitive towards both acidic and basic environments have the ability for intracellular pH mapping and can be used to quantify pH at the cellular level. In addition, detailed pH changes in organelles (including lysosomes and mitochondria) can be investigated at the same time. On the other hand, with the tumour-targeting peptide (cRGD)-modified dual-modal nanovehicles, in vivo tumour MR and fluorescence imaging, which is suitable for cancer diagnosis, can be achieved. Moreover, it has been proved that these materials can pass through the blood brain barrier (BBB). By combining the above mentioned promising properties, these novel multifunctional "nanovehicles" may provide a new method for studying the role of pH during cancer diagnosis and treatment.

4.
Gut Microbes ; : 1-12, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31971861

RESUMO

Colorectal cancer (CRC) causes high morbidity and mortality worldwide, and noninvasive gut microbiome (GM) biomarkers are promising for early CRC diagnosis. However, the GM varies significantly based on ethnicity, diet and living environment, suggesting varied GM biomarker performance in different regions. We performed a metagenomic association analysis on stools from 52 patients and 55 corresponding healthy family members who lived together to identify GM biomarkers for CRC in Chongqing, China. The GM of patients differed significantly from that of healthy controls. A total of 22 microbial genes were included as screening biomarkers with high accuracy in additional 46 cases and 40 randomly selected healthy adults in Chongqing (area under the receive-operation curve (AUC) = 0.905, 95% CI 0.832-0.977). The classifier based on the identified 22 biomarkers also performed well in the cohort from Hong Kong (AUC = 0.811, 95% CI 0.715-0.907) and French (AUC = 0.859, 95% CI 0.773-0.944) populations. Quantitative PCR was applied for measuring three selected biomarkers in the classification of CRC patients in independent Chongqing population containing 30 cases and 30 controls and the best biomarker from Coprobacillus performed well with high AUC (0.930, 95% CI 0.904-0.955). This study revealed increased sensitivity and applicability of our GM biomarkers compared with previous biomarkers significantly promoting the early diagnosis of CRC.

5.
Anal Chem ; 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957430

RESUMO

A mitochondria targeting and immobilized fluorescent probe (Rd1) using triphenylphosphonium as the targeting group and methoxymaleimide as the fixed site is designed for the detection of ClO-. The methoxymaleimide fixed group can react with nucleophiles, such as the reactive thiol groups present in mitochondrial polypeptides and proteins, and form covalent bonds to immobilize the probe within mitochondria. The immobilization of Rd1 enhances its ability to withstand the risk of leakage from mitochondria. Methoxymaleimide shows better reactivity toward Cys than glutathione (GSH), which decreases the ineffective labeling of GSH when it covalently bonds with the reactive thiol residues of mitochondrial proteins; furthermore, it can resist hydrolysis during a long-term storage in water, compared with the classic benzyl chloride fixed unit. The imaging results indicate that Rd1 displays enhanced retention within the mitochondria of cells and tissues upon the decrease of mitochondrial membrane potential (MMP) caused by different stimulations. Furthermore, it possesses the ability to visualize exogenous and endogenous ClO- in living cells, tissues, and zebrafishes.

6.
Mater Sci Eng C Mater Biol Appl ; 108: 110358, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923953

RESUMO

In the field of drug delivery, the controlled release of drugs is continuously one of the highly prioritized research domains. Stimuli-responsive polymers are being investigated as drug delivery vehicles that modulate pharmaceutical effect via tumor specific mechanisms. In this work, a biocompatible graft copolymer (denoted as PSNC-g-mPEG/TPE) was constructed, which comprised a triple-responsive polycarbonate backbone coupled with fluorescent TPE and hydrophilic methoxypoly(ethylene glycol) (mPEG) segments. This multifunctional amphiphilic copolymer was able to self-assemble in aqueous solutions and acted as a drug delivery vehicle that releases cargo in response to multiple biological stimuli (ROS, pH and enzymes). And the results of confocal laser scanning microscopy (CLSM) suggested that these micelles could be rapidly internalized by cells and achieve more effective drug release in cancer cells. Furthermore, the cytotoxicity assays proved the safety of this material. It is anticipated that this strategy has enormous potential in constructing novel anticancer therapeutics.

7.
Metallomics ; 12(1): 104-113, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31755504

RESUMO

The anticancer property of cisplatin has stimulated the development of metal complexes as antitumor agents. Among these complexes, metal thiourea complexes have attracted sufficient attention, and they possess the potential possibility to become new antitumor metallodrugs. Herein, four Au(i) complexes derived from N,N-disubstituted cyclic thiourea ligands were synthesized and characterized. The crystal structure analysis indicated that the complex Au(i)(3c)2OTf was a mononuclear crystal structure with Au(i) coordinated by two sulfur atoms. These Au(i) complexes exhibited excellent toxicities against several tumor cell lines, especially complex Au(i)(3c)2OTf (IC50 = 8.06 µM against HeLa). It was found that Au(i)(3c)2OTf triggered a burst of ROS, disrupted the mitochondrial membrane potential (MMP), subsequently released Cyt-c, and then triggered the activation of caspase 9, caspase 7 and caspase 3. Mechanism experiments manifested that Au(i)(3c)2OTf induced the down-regulation of Bcl-2 and up-regulation of Bax, which further indicated that Au(i)(3c)2OTf triggered mitochondria-mediated apoptosis. In addition, the ROS scavenger-NAC completely blocked the apoptosis and inhibited the reduction of MMP, showing that Au(i)(3c)2OTf induced a ROS-dependent apoptosis pathway. These results indicate that Au(i)(3c)2OTf is worthy of in-depth research as an antitumor agent and may throw light on a better understanding of the effect of thiourea derivatives on antitumor mechanisms.

8.
J Virol Methods ; 276: 113775, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726114

RESUMO

African swine fever (ASF) is a fatal disease caused by a virus in domestic pigs. In this study, a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay were developed for the detection of African swine fever virus (ASFV). LAMP primers targeting the p10 gene of ASFV were designed, the LAMP reaction system was optimized with plasmid pUC57 containing the p10 gene sequence, and the specificities of the real-time LAMP and the visual assays were tested with the DNA or cDNA of pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV) and ASFV, as well as the plasmid pUC57 containing the p10 gene sequence. The detection limits were determined using a serial dilution of plasmid pUC57 containing the p10 gene sequence. Our results showed that the LAMP assays could accurately and specifically detect ASFV with a detection limit of 30 copies per µl-1 of pUC57 containing p10 gene sequence. In addition, the LAMP assays were further evaluated using various genotypes of ASFV strains. Furthermore, the LAMP assays are comparable with the well-established real-time PCR assay. This study provides promising solutions for facilitating preliminary and cost-effective surveillance for prevention and control of ASFV.

9.
J Autism Dev Disord ; 50(1): 292-307, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31621019

RESUMO

The purpose of this study was to evaluate the effects of intraverbal prompts on response diversity and novelty in intraverbals posed to children with autism spectrum disorder (ASD). The intraverbal prompts involving function, feature, and class (FFC) of an item were used in the training of three questions requiring multiple responses. Two Chinese boys with ASD (aged 5-6 years) served as participants. A multiple-probe across three behaviors design was employed. The results indicated that the intraverbal prompts effectively increased the number of divergent responses to all three questions. Novel responses emerged at a low level while generalization to similar questions was not observed following the training.

10.
Angew Chem Int Ed Engl ; 59(5): 2018-2022, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31746532

RESUMO

Exosomes hold great potential in therapeutic development. However, native exosomes usually induce insufficient effects in vivo and simply act as drug delivery vehicles. Herein, we synthesize responsive exosome nano-bioconjugates for cancer therapy. Azide-modified exosomes derived from M1 macrophages are conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) through pH-sensitive linkers. After systemic administration, the nano-bioconjugates can actively target tumors through the specific recognition between aCD47 and CD47 on the tumor cell surface. In the acidic tumor microenvironment, the benzoic-imine bonds of the nano-bioconjugates are cleaved to release aSIRPα and aCD47 that can, respectively, block SIRPα on macrophages and CD47, leading to abolished "don't eat me" signaling and improved phagocytosis of macrophages. Meanwhile, the native M1 exosomes effectively reprogram the macrophages from pro-tumoral M2 to anti-tumoral M1.

11.
J Food Sci ; 85(1): 150-156, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31877234

RESUMO

Fish-scale waste is rich in biocompatible hydroxyapatite (HAp). In the present study, an environmentally friendly method of extracting HAp from fish-scale waste was developed in an effort to promote environmental sustainability. Deep eutectic solvents (choline chloride/glycerol, 1/2) were used to extract HAp from bighead carp (Aristichthys nobilis) scales. A relatively high extraction rate of 47.67% ± 1.81% was obtained under optimum conditions (70 °C, a solid/liquid ratio of 1/15 g/g and a 2.5 hr extraction time). The obtained HAp was characterized and its purity was determined using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. The chemical composition was performed by energy-dispersive X-ray spectrometry and inductively coupled plasma-optical emission spectroscopy. Its morphology and particle size were observed using scanning electron microscopy and particle size distribution analysis. Thermogravimetric analysis was used to determine its thermal stability. Blood compatibility was determined using a hemolytic test. The results showed that this extraction yielded HAp with the irregular morphology, the higher Ca/P ratio, good thermal stability, and blood compatibility, indicating that the proposed method is an excellent alternative for the improved utilization of fish scale waste. PRACTICAL APPLICATION: Biocompatible hydroxyapatite (HAp) was extracted from fish scale (FS) waste by using an environmentally friendly deep eutectic solvent. The optimized extraction and structure characterization of extracted HAp were investigated in this study. The results showed that the extracted HAp had the irregular morphology, the higher Ca/P ratio, good thermal stability, and blood compatibility, which indicated that the proposed method was an excellent alternative to improving the utilization of FS waste.

12.
Insect Sci ; 27(1): 159-169, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29851277

RESUMO

Agasicles hygrophila has been introduced worldwide as a control agent for the invasive weed Alternanthera philoxeroides. However, global warming has potential impact on its controlling efficacy. The aim of this research was to explore the primary factors responsible for the greatly reduced A. hygrophila population in hot summers. To imitate the temperature conditions in summers, different developmental stages of A. hygrophila were treated with high temperatures from 32.5 °C to 45 °C for 1-5 h. Based on the survival rate, the heat tolerance of each developmental stage was ranked from lowest to highest as follows: egg, 1st, 2nd, 3rd instar larva, adult and pupa. Eggs showed the lowest heat tolerance with 37.5 °C as the critical temperature affecting larval hatching. Heat treatment of the A. hygrophila eggs at 37.5 °C for 1 h decreased the hatch rate to 24%. Our results indicated that when compared with the control at 25 °C, 1 h treatment at 37.5 °C prolonged the duration of the egg stage, shortened the duration of oviposition and total longevity, and changed the reproductive pattern of A. hygrophila. The net reproductive rate, intrinsic rate and finite rate were all significantly reduced. The results suggest that low heat tolerance of the eggs was the major factor responsible for the reduction of A. hygrophila populations, and the key temperature was 37.5 °C. Therefore, appropriate measures should be taken to protect eggs in order to maintain the efficacy of A. hygrophila in the biological control of A. philoxeroides in hot summers.


Assuntos
Besouros/fisiologia , Temperatura Alta/efeitos adversos , Termotolerância , Animais , Besouros/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Óvulo/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Estações do Ano
13.
Ying Yong Sheng Tai Xue Bao ; 30(12): 4021-4030, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-31840446

RESUMO

Fire is an important ecological factor in boreal coniferous forest, which directly affects plant taxonomic and functional diversity and consequently forest succession. We analyzed the changes of soil nutrient contents, leaf functional traits, taxonomic and functional diversity of a Larix gmelinii community under different fire intensity levels (low, medium, heavy). The forest stand had been naturally recovered for 12 years in Yakeshi area. The results showed that fire significantly reduced soil total nitrogen content, but did not affect soil total phosphorus content. Low and medium fire intensities could maintain higher species diversity and functional diversity of the community. Medium fire disturbance significantly increased species diversity of the community, with maximum species richness index, Shannon index, Simpson index and Pielou evenness index. Fire disturbance reduced functional richness and functional divergence of the community, which were the largest in medium and low fire intensity respectively (except unburned). Functional evenness and Rao qua-dratic entropy index increased after forest fire disturbance, and the largest was in the low intensity burned area. With the increases of fire intensity, leaf dry matter content, leaf tissue density and leaf total phosphorus content showed a significantly increased trend, while specific leaf area, leaf water content, leaf total nitrogen content and leaf N:P showed the trend unburned > medium fire > low fire > heavy fire, leaf thickness increased first and then decreased. Fire intensity had significant effects on leaf functional traits and functional diversity of forest community. Moderate fire distur-bance could promote forest restoration.


Assuntos
Fogo , Larix , Florestas , Solo , Taiga
14.
J Org Chem ; 84(24): 16171-16182, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31774681

RESUMO

Density functional theory (DFT) calculations were performed to investigate the photosensitizer-free visible-light-mediated gold-catalyzed cis-difunctionalization of alkynes with aryl diazonium salts. The detailed reaction mechanism is established, and the observed regio- and chemoselectivities are rationalized. The results are compared to those of the rhodium-catalyzed cis-difunctionalization of alkynes. It is indicated that the excitation of the aryl diazonium salt initiates the photocatalytic cycle, and the following single-electron transfer between the Au(I) catalyst and the excited aryl diazonium salt affords the key aryl radical. Both gold- and rhodium-catalyzed reactions involve two major steps: alkyne insertion into the M-N or M-C bond (M = Au, Rh), and C-C or C-N reductive elimination from the M(III) center. The cis-difunctionalized product can be obtained by the trimethylsilyl (TMS)-substituted alkyne through the gold catalysis or by the Ph-substituted alkyne through the rhodium catalysis. The catalyst-dependent reactivity switch of TMS- and Ph-substituted alkynes is attributed to the catalyst-induced shift of the rate-determining step.

15.
Med Sci Monit ; 25: 8465-8471, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31707402

RESUMO

BACKGROUND The present study was designed to investigate the effect of wogonin on Caov-3 and A2780 ovary cancer cell proliferation and the mechanisms involved. MATERIAL AND METHODS Cell viability changes and apoptosis induction by wogonin were assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide) assay and fluorescence microscopy. Morphological examination of cells was performed using transmission electron microscopy. RESULTS Wogonin exhibited inhibitory effect on Caov-3 and A2780 cancer cell proliferation in a concentration-based manner. Caov-3 and A2780 cell proliferation was reduced to 18% and 21%, respectively on treatment with 200 µM concentration of wogonin. Treatment with wogonin significantly enhanced the percentage of A2780 cells showing apoptosis. The nuclear membrane degradation and condensation of chromatin material was evident in A2780 cells on treatment with wogonin. Treatment of A2780 cells with wogonin suppressed the migration potential significantly. The proportion of A2780 cells in G1/G0 phase was markedly raised on exposure to wogonin for 48 hours. CONCLUSIONS In summary, this study demonstrated that wogonin acts as an ovary cancer cell proliferation inhibiting agent through activation of apoptosis. Wogonin, therefore, can be investigated further for the development of ovary cancer treatment.

16.
Am J Transl Res ; 11(10): 6561-6568, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737207

RESUMO

To elucidate the potential function of lncRNA CACS15 in the progression of ovarian cancer (OC) and its underlying mechanism. CACS15 level in OC tissues and cell lines was determined by qRT-PCR. Correlation between CACS15 level and survival of OC patients was analyzed through Kaplan-Meier method. Regulatory effects of CACS15 on cellular behaviors of OC cells were evaluated through CCK-8 and Transwell assay. Subsequently, RIP and RNA pull-down were performed to uncover the interaction between CACS15 and EZH2. Through ChIP assay, the interaction between EZH2 and APC was illustrated. A series of rescue experiments were finally conducted to elucidate the role of CACS15/APC axis in the malignant progression of OC. CACS15 was upregulated in OC tissues and cell lines relative to matched ones. High-level of CACS15 predicted worse survival in OC patients. Knockdown of CACS15 attenuated proliferative, migratory and invasive abilities of OC cells. CACS15 was mainly distributed in cytoplasm of OC cells, which was interacted with EZH2 at post-transcriptional level. Knockdown of CACS15 reduced the occupancies of EZH2 and H3K27me3 in APC promoter regions. Notably, knockdown of APC could reverse the regulatory effect of CACS15 on cellular behaviors of OC cells. LncRNA CACS15 inhibits the expression of APC by recruiting EZH2, thus accelerating the progression of ovarian cancer as an oncogene.

17.
Animals (Basel) ; 9(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739461

RESUMO

This experiment aimed to evaluate meat quality, fatty acid profile in back-fat, and fecal microbiota of growing-finishing pigs fed with liquid enzymatically digested food waste. Fifty-six crossbred pigs (approximately 32.99 kg body weight) were assigned to one of two treatments with seven replicate pens and four pigs per pen. Pigs were fed with control (corn-soybean meal diets) or food waste from d 0 to 53, while all pigs were fed with the control diet from d 53 to 79. The 16S rRNA sequencing was used to analyze microbiota of feces collected on d 0, 28, 53, and 79. Meat quality and carcass characteristics were measured in one pig per pen at the end of the experiment. Pigs fed with food waste contained more (p < 0.05) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in back-fat. Feeding food waste increased (p < 0.05) the relative abundances of Lachnospiraceae and Ruminococcaceae, but decreased (p < 0.05) the relative abundances of Streptococcaceae and Clostridiaceae in feces on d 29 or d 53. In conclusion, feeding enzymatically digested food waste did not affect pork quality, but provided more beneficial fatty acids to pork consumers and altered the fecal microbiota in growing-finishing pigs.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31616382

RESUMO

The factors that cause post-natal growth retardation (PGR) in pigs are complicated; however, metabolic and immune system impairment seem to be involved. The purpose of this study was to investigate the changes of blood parameters, hormone profiles, antioxidant capacity, and immune responses in PGR pigs. Blood and small intestinal mucosa samples were collected from 42-days-old PGR and healthy pigs. The results showed that compared with the healthy group, the relative weight of spleen and kidney were greater, but the liver was lighter in PGR pigs (P < 0.05). The PGR pigs had increased serum alanine transaminase, urea nitrogen, blood ammonia, IgG, and complement 4, but decreased glucose and albumin (P < 0.05). The higher levels of serum leptin (LEP) and thyroxin (T4), and the lower levels of insulin-like growth factor-1 (IGF-1), 5-hydroxytryptamine (5-HT), somatostatin (SS), and agouti gene-related protein (AgRP) were observed in PGR pigs (P < 0.05). Consistent with the serum levels of hormones, the mRNA levels of gut hormones and their receptors were also altered in intestinal mucosa from PGR pigs (P < 0.05). The PGR pigs exhibited higher plasma concentrations of interleukin-1ß (IL-1ß), IL-6, IL-8, and transformed growth factor beta (TGFß) (P < 0.05). However, the mRNA expressions of several cytokines were lower in the small intestinal mucosa of PGR pigs (P < 0.05). Abnormal antioxidant indexes in serum of PGR pigs were observed, which was in accordance with the reduced mRNA expression of several anti-oxidative genes in the small intestinal mucosa of PGR pigs (P < 0.05). These data demonstrate that an abnormal gut hormone system, immune dysfunction, and decreased antioxidant capacity may contribute to PGR in pigs. These changes could provide a valuable target in the regulation of post-natal growth retardation in animals and humans.

19.
Molecules ; 24(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635062

RESUMO

The objective of this study was to determine the in vitro antimicrobial activity of several organic acids and their derivatives against Gram-positive (G+) and Gram-negative (G-) bacteria. Butyric acid, valeric acid, monopropionin, monobutyrin, monovalerin, monolaurin, sodium formate, and ProPhorce-a mixture of sodium formate and formic acid (40:60 w/v)-were tested at 8 to 16 concentrations from 10 to 50,000 mg/L. The tested bacteria included G- bacteria (Escherichia coli, Salmonella enterica Typhimurium, and Campylobacter jejuni) and G+ bacteria (Enterococcus faecalis, Clostridium perfringens, Streptococcus pneumoniae, and Streptococcus suis). Antimicrobial activity was expressed as minimum inhibitory concentration (MIC) of tested compounds that prevented growth of tested bacteria in treated culture broth. The MICs of butyric acid, valeric acid, and ProPhorce varied among bacterial strains with the lowest MIC of 500-1000 mg/L on two strains of Campylobacter. Sodium formate at highest tested concentrations (20,000 mg/L) did not inhibit the growth of Escherichia coli, Salmonella Typhimurium, and Enterococcus faecalis, but sodium formate inhibited the growth of other tested bacteria with MIC values from 2000 to 18,800 mg/L. The MIC values of monovalerin, monolaurin, and monobutyrin ranged from 2500 to 15,000 mg/L in the majority of bacterial strains. Monopropionin did not inhibit the growth of all tested bacteria, with the exception that the MIC of monopropionin was 11,300 mg/L on Clostridia perfringens. Monolaurin strongly inhibited G+ bacteria, with the MIC value of 10 mg/L against Streptococcus pneumoniae. The MIC tests indicated that organic acids and their derivatives exhibit promising antimicrobial effects in vitro against G- and G+ bacteria that are resistant to antimicrobial drugs. The acid forms had stronger in vitro antimicrobial activities than ester forms, except that the medium chain fatty acid ester monolaurin exhibited strong inhibitory effects on G+ bacteria.

20.
Br J Nutr ; : 1-8, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31623699

RESUMO

The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA