Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.955
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 304: 123396, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37708760

RESUMO

The complete excited-state sensing mechanism of a fluorescent probe capable of distinguishing cysteine/homocysteine and glutathione from analogous biological thiols has been investigated. Using a TDDFT method, the nature of the fluorescence differences in the detection of thiols by the probe has been explained at the molecular level. Calculation results imply that the probe undergoes photoinduced electron transfer (PET) from the fluorophore to the nitrobenzooxadiazole (NBD)-based acceptor in the excited state. In the presence of a thiol, the NBD moiety is cleaved and the red fluorescence emission of the fluorophore is enhanced through inhibition of the PET process. The sulfur-substituted NBD-thiol product is predisposed to undergo excited-state torsion, leading to fluorescence quenching. However, for cysteine and homocysteine, their appropriate distances lead to Smiles rearrangements with relatively low activation energies (26.60 kJ/mol and 42.94 kJ/mol, respectively) and the emission of a distinct green fluorescence at ambient temperature. It has been theoretically confirmed that the distance between two reactive sites, such as sulfhydryl and amino moieties, can be used to distinguish different thiols, thus providing rational support for the control of fluorescence activity and the design of probe molecules.

2.
J Colloid Interface Sci ; 653(Pt A): 108-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37713909

RESUMO

Nickel- and iron-containing layered double hydroxides (NiFe-LDHs) are prospective electrocatalysts for the oxygen evolution reaction (OER), but they suffer from poor electrical conductivity and inaccessible active sites. Herein, we employ a facile and efficient quenching strategy to modify the morphology and surface characteristics of NiFe-LDHs by rapid cooling in a series of salt solutions. After quenching in a SnCl4 solution, the modified NiFe-LDHs exhibit a low overpotential of 204 mV at a current density of 10 mA·cm-2 and Tafel slope of 58.0 mV·dec-1 in a 1.0 M KOH solution. The improvement in the oxygen-evolution performance is ascribed to the morphology transformation from agglomerated NiFe-LDHs flowers into dispersed two-dimensional NiFe-LDHs nanosheets, which offers more active sites for the OER. Metal atoms are also introduced to the surface of NiFe-LDHs nanosheets during quenching, thereby changing the chemical coordination environment between Ni and Fe and improving their conductivity. Considering the diversity of LDHs and salt solutions, this quenching strategy may provide a sophisticated approach to preparing stable non-noble-metal electrocatalysts for the OER.

3.
Sci Total Environ ; 906: 167639, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813256

RESUMO

BACKGROUND: Excessive exposure to per and poly-fluoroalkyl compounds (PFAS) can lead to various negative health effects. However, there's a lack of research studying the link between PFAS exposure and depression in adults, and the existing findings are inconsistent. OBJECTIVES: Utilizing data collected from the National Health and Nutrition Examination Survey (NHANES) database spanning 2005 to 2018, this study aimed to examine the potential connection between PFAS exposure and depressive symptoms in adults. METHODS: The correlation between individual PFAS exposure and depressive symptoms was examined through the establishment of weighted logistic regression models (crude model, model 1, model 2) and restricted cubic spline models. To verify the stability of the model, receiver operating characteristic (ROC) curves of the logistic regression model were generated, and a ten-fold cross-validation model was employed. Additionally, the relationship between adult depressive symptoms and mixed PFAS exposure was tested through the utilization of quantile g-computation (qgcomp). RESULTS: The findings revealed that heightened exposure levels to PFOA, PFHxS, and PFUnDA, were connected with a diminished risk of depressive symptoms in adults (ORPFOA: 0.67, 95 % confidence interval (CI): 0.47, 0.95; ORPFHxS: 0.66, 95 %CI: 0.49, 0.89; ORPFUnDA: 0.65, 95 %CI: 0.45, 0.96). PFOS, PFHxS, and PFDA demonstrated a dose-response relationship with the risk of depressive symptoms. The ROC curve indicated model stability, with recognition accuracy exceeding 90 % in the cross-validation model. The outcomes of qgcomp demonstrated that an increase in serum PFAS concentration was linked to a decreased risk of depressive symptoms in adults (OR: 0.85, 95 %CI: 0.75, 0.96). DISCUSSION: Due to the cross-sectional design of this study, it's important to acknowledge the potential for reverse causality between PFAS exposure and depressive symptoms. As a result, the outcomes should not be oversimplified to interpret PFAS exposure as a protective factor against adult depressive symptoms.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Inquéritos Nutricionais , Depressão/induzido quimicamente , Depressão/epidemiologia , Estudos Transversais , Fluorocarbonos/toxicidade
4.
Sci Total Environ ; 909: 168550, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37979857

RESUMO

Under the influence of climate change and human activities, water scarcity and uneven spatial distribution have become critical factors constraining societal development and threatening ecological security. Accurately assessing changes in blue and green water resources (BW and GW) caused by human activities can reveal the actual situation of water scarcity. However, previous research often overlooked the calibration of GW and human water usage, and it rarely delved into the primary human factors leading to water scarcity and potential impact mechanisms. Therefore, based on the PCR-GLOBWB model that considers human impacts, and with reasonable calibration of B/GW and human water usage, hydrological processes were simulated under both human-influenced and natural conditions. A comprehensive assessment of the impact of human activities on BW and GW was conducted. The results show that: (1) BW and GW exhibit a spatial pattern of increasing from northwest to southeast in the basin. From 1961 to 2020, the proportion of BW showed an upward trend, while GW was decreasing; (2) The impact of human activities on changes in water resources is mainly concentrated in the midstream and dowmstream of the basin. Due to human influences, the green water flow (GWF) increased by 3-24.4 mm, and the BW volume increased by 67.2-146.4 mm. However, the green water storage (GWS) decreased by 5.6-75.4 mm; (3) The impact of human activities on blue water scarcity (BWscarcity) is significantly greater than green water scarcity (GWscarcity). The worsening of GWscarcity does not exceed 0.2, while areas where BW reaches significant deterioration (BWscarcity > 1.5) account for 1.3 %, 9.8 %, and 17 % of the upstream, midstream and downstream, respectively. (4) Irrigation activities are the main factor causing water resource scarcity. In the future, it is important to reasonably develop the potential for GW utilization and optimize BW management measures to address water resource crises.

5.
Microbiol Res ; 278: 127518, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897841

RESUMO

Amphipathic compounds known as biosurfactants are able to reduce surface and interfacial tensions. These substances produced by microbial organisms perform the same functions as chemical surfactants with several enhancements, the most significant of which is biocontrol activity. Lipopeptide is one of the five biosurfactants from natural resources and is identified as the best alternative for chemical surfactants and the major topic of interest for both scientific and industrial communities due to their increasingly growing potential applications in biological and commercial fields. These are the biological compounds with very less toxicity level that increase their importance in the pesticide industry. In this article we summarize the structural diversity of the microbial lipopeptide biosurfactants and focus on their applications as biocontrol agents in plants, covering (1) an intensive study of the structural diversity of lipopeptide biosurfactants originated primarily by the Bacillus, Pseudomonas, Cyanobacteria, and Actinomycetes species is presented, (2) the comparative study of advantages and disadvantages of characterization techniques and physicochemical properties which have a major role in biocontrol activity of microbial lipopeptides, and (3) their wide range biocontrol applications as systemic resistance inducers against different plant diseases, resistance against phytopathogens by alteration of wettability of plant surfaces and antimicrobial activities of important bioactive lipopeptides produced from Bacillus strains.


Assuntos
Bacillus , Lipopeptídeos , Lipopeptídeos/farmacologia , Bacillus/química , Pseudomonas , Tensoativos/farmacologia , Tensoativos/química , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
6.
J Ethnopharmacol ; 319(Pt 3): 117346, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879506

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cryptotanshinone is the main bioactive component of Salvia miltiorrhiza, with various mechanisms of action, including antioxidant, anti-inflammatory, cardiovascular protection, neuroprotection, and hepatoprotection. Salvia miltiorrhiza is used clinically by gynecologists in China. AIM OF THE STUDY: Polycystic ovary syndrome (PCOS) has a significant impact on women's quality of life, leading to infertility and reproductive disorders. Hence, this study aims to assess the pharmacological activity of cryptotanshinone in the treatment of PCOS and investigate its therapeutic mechanism. MATERIALS AND METHODS: Human chorionic gonadotropin (HCG) combined with insulin is used to simulate a PCOS-like rat model and attempt to discover the abnormal changes that occur and the means by which the pathway acts in this model. RESULTS: The transcriptome sequencing method is used to identify 292 differential genes that undergo significant changes, of which 219 were upregulated and 73 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the signaling pathways reveals that differential expressed genes are significantly enriched in 23 typical pathways. Estrogen signaling pathways are screened in the cryptotanshinone and model groups, and significant differential changes in Fos, ALOX12, and AQP8 are found. This suggests that these signaling pathways and molecules may be the main signaling targets for regulating the differences in endometrial tissue. CONCLUSION: These results indicate that cryptotanshinone has targets for regulating the proliferation of endometrial tissue via estrogen signaling pathways in PCOS-like rats, providing an experimental basis for the clinical application of cryptotanshinone in the treatment of PCOS.


Assuntos
Síndrome do Ovário Policístico , Feminino , Ratos , Humanos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Qualidade de Vida , Endométrio/metabolismo , Estrogênios/metabolismo
7.
J Environ Sci (China) ; 137: 287-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980015

RESUMO

Amoxicillin, a widely used antibiotic in human and veterinary pharmaceuticals, is now considered as an "emerging contaminant" because it exists widespreadly in the environment and brings a series of adverse outcomes. Currently, systematic studies about the developmental toxicity of amoxicillin are still lacking. We explored the potential effects of amoxicillin exposure on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice, at different doses (75, 150, 300 mg/(kg·day)) during late-pregnancy, or at a dose of 300 mg/(kg·day) during different stages (mid-/late-pregnancy) and courses (single-/multi-course). Results showed that prenatal amoxicillin exposure (PAmE) had no significant influence on the body weights of dams, but it could inhibit the physical development and reduce the survival rate of fetuses, especially during the mid-pregnancy. Meanwhile, PAmE altered multiple maternal/fetal serum phenotypes, especially in fetuses. Fetal multi-organ function results showed that PAmE inhibited testicular/adrenal steroid synthesis, long bone/cartilage and hippocampal development, and enhanced ovarian steroid synthesis and hepatic glycogenesis/lipogenesis, and the order of severity might be gonad (testis, ovary) > liver > others. Further analysis found that PAmE-induced multi-organ developmental and functional alterations had differences in stages, courses and fetal gender, and the most obvious changes might be in high-dose, late-pregnancy and multi-course, but there was no typical rule of a dose-response relationship. In conclusion, this study confirmed that PAmE could cause abnormal development and multi-organ function alterations, which deepens our understanding of the risk of PAmE and provides an experimental basis for further exploration of the long-term harm.


Assuntos
Amoxicilina , Drogas Veterinárias , Masculino , Humanos , Feminino , Gravidez , Camundongos , Animais , Amoxicilina/toxicidade , Desenvolvimento Fetal , Esteroides/farmacologia
8.
J Environ Sci (China) ; 137: 515-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980035

RESUMO

Arsenic (As) fate in paddy fields has been one of the most significant current issues due to the strong As accumulation potential of rice plants under flooded conditions. However, no attempt was done to explore As methylation and volatilization under non-flooded conditions. Herein, we investigated the effects of water management on As methylation and volatilization in three arsenic-contaminated soils enhanced by biostimulation with straw-derived organic matter and bioaugmentation with genetic engineered Pseudomonas putida KT2440 (GE P. putida). Under flooded conditions, the application of biochar (BC), rice straw (RS) and their combination (BC+RS) increased total As in porewater. However, these effects were greatly attenuated under non-flooded conditions. Compared with RS amendment alone, the combination of GE P. putida and RS further promoted the As methylation and volatilization, and the promotion percentage under non-flooded conditions were significantly higher than that under flooded conditions. The combined GE P. putida and RS showed the highest efficiency in As methylation (88 µg/L) and volatilization (415.4 µg/(kg·year)) in the non-flooded soil with moderate As contamination. Finally, stepwise multiple linear regression analysis presented that methylated As, DOC and pH in porewater were the most important factors contributing to As volatilization. Overall, our findings suggest that combination of bioaugmentation with GE P. putida and biostimulation with RS/BC+RS is a potential strategy for bioremediation of arsenic-contaminated soils by enhancing As methylation and volatilization under non-flooded conditions.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Metilação , Água , Volatilização , Solo , Biodegradação Ambiental , Abastecimento de Água , Poluentes do Solo/análise
9.
Neural Regen Res ; 19(4): 833-845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843219

RESUMO

A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis. As a contributing factor, microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota's diverse microorganisms, and for both neuroimmune and neuroendocrine systems. Here, we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases, with an emphasis on multi-omics studies and the gut virome. The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated. Finally, we discuss the role of diet, prebiotics, probiotics, postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.

10.
Bioact Mater ; 32: 304-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37876555

RESUMO

Using bone tissue engineering strategies to achieve bone defect repair is a promising modality. However, the repair process outcomes are often unsatisfactory. Here we properly designed a multi-functional microsphere system, which could deliver bioactive proteins under the dual response of ultrasound and microenvironment, release microenvironment-responsive products on demand, reverse bone injury microenvironment, regulate the immune microenvironment, and achieve excellent bone defect treatment outcomes. In particular, the MnO2 introduced into the poly(lactic-co-glycolic acid) (PLGA) microspheres during synthesis could consume the acid produced by the degradation of PLGA to protect bone morphogenetic protein-2 (BMP-2). More importantly, MnO2 could consume reactive oxygen species (ROS) and produce Mn2+ and oxygen (O2), further promoting the repair of bone defects while reversing the microenvironment. Moreover, the reversal of the bone injury microenvironment and the depletion of ROS promoted the polarization of M1 macrophages to M2 macrophages, and the immune microenvironment was regulated. Notably, the ultrasound (US) irradiation used during treatment also allowed the on-demand release of microenvironment-responsive products. The multi-functional microsphere system combines the effects of on-demand delivery, reversal of bone injury microenvironment, and regulation of the immune microenvironment, providing new horizons for the clinical application of protein delivery and bone defect repair.

11.
Food Chem ; 431: 137066, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37572484

RESUMO

This study investigated the non-volatile metabolites and antioxidant activity of Douchi, an edible mushroom by-product. A total of 695 non-volatile metabolites were detected using UPLC-MS/MS-based metabolomics analysis, and the greatest impact on metabolite composition was observed during Koji-making and the first 5 days of post-fermentation. Throughout the fermentation process, 366 differential metabolites were identified, with flavonoids being the most prominent followed by amino acids and their derivatives, which were found to be important for the quality of edible mushroom by-product Douchi (EMD). The antioxidant capacity of EMD significantly increased with the longer fermentation time, which might be associated with the conversion of isoflavone glycosides to aglycones, amino acids and their derivatives, free fatty acids, group A saponins, and phenolic acids. These findings suggested that different fermentation phases of EMD significantly affected the non-volatile metabolite profile and antioxidant capacity.


Assuntos
Agaricales , Antioxidantes , Antioxidantes/metabolismo , Agaricales/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fermentação , Aminoácidos/metabolismo , Metabolômica
12.
Sci Total Environ ; 906: 166839, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690761

RESUMO

Microcystins (MCs) can cause reproductive and developmental toxicity and disrupt endocrine homeostasis in mammals. In the present study, male, Sprague-Dawley (SD) rats were administrated 3 or 30 µg MC-LR/kg, body mass (bm) per day via intraperitoneal (i.p.) injections for 6 weeks. Effects of MC-LR on histology, hormone concentrations, gene transcriptional profiles and protein expressions along the hypothalamic-pituitary-adrenal (HPA), -gonad (HPG) and -thyroid (HPT) axes were assessed. Sub-chronic administration with MC-LR caused histological damage to hypothalamus, pituitary, adrenal, testes and thyroid and affected relative masses of pituitary, adrenal and testes. The HPA axis was activated and serum concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were significantly augmented. Along the HPG axis, serum concentrations of gonadotropin-releasing hormone (GnRH) and dihydrotestosterone (DHT) were diminished, while concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T) and estradiol (E2) were augmented. For the HPT axis, only concentrations of free tetra-iodothyronine (fT4) were significantly diminished, while concentrations of thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH) or free tri-iodothyronine (fT3) were not significantly changed. Also, several genes and proteins related to synthesis of steroid hormones were significantly altered. Findings of the present study illustrate that MC-LR can cause endocrine-disrupting effects through the disruption of synthesis and secretion of hormones along the HPA, HPG and HPT axes and negative feedback regulation. Also, there could be crosstalk among HPA, HPG and HPT axes. These findings elucidate mechanisms of endocrine-disrupting effects of MCs.


Assuntos
Sistema Hipotálamo-Hipofisário , Microcistinas , Masculino , Ratos , Animais , Microcistinas/toxicidade , Ratos Sprague-Dawley , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Endócrino , Testosterona , Mamíferos/metabolismo
13.
Talanta ; 266(Pt 1): 125011, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544254

RESUMO

In this study, we developed a novel electrochemical biosensor based on CRISPR/Cas12a (E-CRISPR) for the rapid and sensitive detection of Salmonella Typhimurium (S. Typhimurium). The CRISPR/Cas12a system was applied to identify S. Typhimurium gene and induce signal changes in electrochemical measurement. The colloidal gold and MXene (CG@MXene) nanocomposites were synthesized and immobilized to improve the performance of the biosensor by decreasing the background noise. The formation process of CG@MXene was well characterized, and experiment conditions were fully optimized. Under the optimal conditions, the proposed E-CRISPR biosensor exhibited excellent sensitivity for S. Typhimurium, with a limit of detection (LOD) of 160 CFU/mL, and great specificity against other common foodborne pathogens. Furthermore, the feasibility of the E-CRISPR biosensor was evaluated by analyzing S. Typhimurium-spiked chicken samples, with a recovery rate ranging from 100.46% to 106.37%. In summary, this research proposed a novel E-CRISPR biosensor from a new perspective to detect S. Typhimurium which can be an alternative approach for bacterial detection in the food supply chain.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Salmonella typhimurium/genética , Coloide de Ouro
14.
Food Chem ; 432: 137258, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37657339

RESUMO

Polyphenol oxidase (PPO) plays a critical role in decrement of shrimp quality. To obtain active PPO and elucidate its enzymatic properties, PPO from Litopenaeus vannamei (Lv-PPO) was cloned, expressed in E. coli and purified by affinity column chromatography. The Lv-PPO gene was 2076 bp in length encoding 691 amino acids. The recombinant Lv-PPO (rLv-PPO) with a molecular mass of ∼85.0 kDa was successfully expressed and its sequence was verified by LC-MS/MS. rLv-PPO was biologically active with an optimal temperature of 40℃ and an optimal pH of 6.0. Metal ions Cu2+ and Zn2+ altered the activity of rLv-PPO by influencing its secondary and tertiary structures. rLv-PPO showed catalytic activity towards l-Dopa and catechol. A specific polyclonal antibody against rLv-PPO was prepared. Western blot analysis revealed that PPO levels were highest in hemolymph, followed by telson, carapace, and eyestalk. Expression of rLv-PPO will assist future studies on the mechanism in shrimp melanosis.


Assuntos
Escherichia coli , Penaeidae , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Penaeidae/genética , Anticorpos , Catecol Oxidase/genética
15.
Adv Mater ; : e2308519, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913824

RESUMO

With ultralight weight, low thermal conductivity, and extraordinary high-temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in-orbit operation and re-entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, we report a spatially confined assembly strategy of multiscale low-dimensional nanocarbons to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin-film-like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all-carbon aerogels with a hierarchical cellular structure and quasi-closed cell walls achieve the best thermomechanical and insulation trade-off, exhibiting flyweight density (24 mg cm-3 ), temperature-constant compressibility (-196 to 1600 °C), and a low thermal conductivity of 0.04829 W m-1 K-1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration. This article is protected by copyright. All rights reserved.

16.
Adv Mater ; : e2307938, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910130

RESUMO

Layered oxides have become the research focus of cathode materials for sodium-ion batteries (SIBs) due to the low cost, simple synthesis process, and high specific capacity. However, the poor air stability, unsteady phase structure under high voltage, and slow anionic redox kinetics hinder their commercial application. In recent years, the concept of manipulating orbital hybridization has been proposed to simultaneously tune the microelectronic structure and modify the surface chemistry environment intrinsically. In this review, the hybridization modes between atoms in 3d/4d transition metal (TM) orbitals and O 2p orbitals near the region of the Fermi energy level (EF ) were summarized based on orbital hybridization theory and first-principles calculations as well as various sophisticated characterizations. Furthermore, the underlying mechanisms are explored from macro-scale to micro-scale, including enhancing air stability, modulating high voltage, and stabilizing anionic redox chemistry. Meanwhile, the origin, formation conditions, and different types of orbital hybridization, as well as its application in layered oxide cathodes are presented, which provide insights into the design and preparation of cathode materials. Ultimately, the main challenges in the development of orbital hybridization and its potential for the production application are also discussed, pointing out the route for high-performance practical sodium layered oxide cathodes. This article is protected by copyright. All rights reserved.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37921729

RESUMO

INTRODUCTION: The mesially inclined mandibular second molar can be supported upright by the microimplant anchorage. This study established the finite element model to analyze the displacement trend and periodontal ligament (PDL) stress distribution of the uprighting mandibular second molar with the microimplant under different conditions. METHODS: A 3-dimensional model of the mandible and dentition was established. The mesial inclination of the mandibular second molar was 30°, 45°, and 60°. Microimplants were implanted between the buccal side of the second premolar and the first molar and in the distal part of the mandibular second molar, respectively. Six groups were set, each loaded with 0.5 N of force. The second molar initial displacement trend and PDL stress distribution were evaluated. RESULTS: The PDL stress of mandibular second molars in all groups was within the physiological limit, and the PDL stress of mandibular second molars in the distal implant groups was lower than that of mandibular second molars in the mesial implant groups. PDL stress concentration in the cervical area. Tooth displacement decreased as the mesial inclination angle of the second molars increased. The sagittal displacement of mesial implant groups was larger, and there was a tendency of mesiobuccal torsion when standing uprighting; the vertical displacement of distal implant groups was larger, and there was a tendency of distal lingual torsion when standing uprighting. CONCLUSIONS: Distal microimplant has a better extrusion effect on the mesially inclined second molar, whereas mesial microimplant has a better effect on the distal movement. The optimal orthodontic force for microimplant traction on mesially inclined second molars is 0.5-0.8 N.

18.
Front Microbiol ; 14: 1288990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920260

RESUMO

The origin and intrafamilial transmission of Human T-Lymphotropic Virus Type 1 (HTLV-1) in non-endemic populations such as China is still unknown. In this study, donors from blood banks/centers in China (including 28 provinces and Shenzhen city) during 2019 and 2021 were screened for HTLV-1/2 antibody, and all the reactive samples were tested using a line immunoassay (LIA) and quantitative polymerase chain reaction (qPCR). Samples that can be detected using qPCR were amplified and sequenced for the long terminal repeat (LTR) region. The positive donors were contacted to identify their relatives. As a result, 4,451,883 blood donors were totally tested, and 50 of them were confirmed to be HTLV-1/2 positive. Viral LTR sequences genotyped from 26 HTLV-1 carriers demonstrated that all had the HTLV-1a genotype, of which Transcontinental and Japanese subgroups accounted for half each. There were 17 family members of 11 index donors detected, and the HTLV-1 infection rate in the spouses of male index donors (83.3%, 5/6) was significantly higher than that in the husbands of female index donors (0.0%, 0/4). However, 7 children of HTLV-1 positive women were tested and found negative. Therefore, our findings indicated that HTLV-1 is spreading silently from high-endemic to low-endemic areas in China. To prevent further HTLV-1/2 transmission, an efficient HTLV-1/2 screening strategy and counseling of the virus carriers are essential.

19.
Front Immunol ; 14: 1249731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928544

RESUMO

Introduction: OAS1(2'-5'-oligoadenylate synthetase 1) is a member of the Interferon-Stimulated Genes which plays an important role in the antiviral process. In recent years, the role of OAS1 in tumors has attracted attention, and it was found to be associated with prognosis in several tumors. However, the mechanism by which OAS1 affects tumors is unclear and pan-cancer study of OAS1 is necessary to better understand its implication in cancers. Methods: The expression, prognostic value, genetic alteration, alternative splicing events of OAS1 in pan-cancers were analyzed using TCGA, GTEx, HPA, GEPIA and OncoSplicing databases. OAS1 associated immune cell infiltration was evaluated using the ESTIMATE, xCell, CIBERSORT and QUANTISEQ algorithm. Single cell transcriptome data download using TISH database. Finally, the roles of the OAS1 on apoptosis, migration and invasion were investigated in two pancreatic cancer cells. Results: Our results revealed significant differences in OAS1 expression among various tumors, which had prognostic implications. In addition, we investigated the impact of OAS1 on genomic stability, methylation status, and other factors across different types of cancer, and the effects of these factors on prognosis. Notably, our study also demonstrated that OAS1 overexpression can contribute to CTL dysfunction and macrophage M2 polarization. In addition, cell experiments showed that the knockdown of OAS1 could reduce the invasive ability and increased the apoptosis rate of PAAD cells. Discussion: These results confirmed that OAS1 could be a prognostic biomarker and therapeutic target for its potential role in CTL dysfunction and macrophage M2 polarization.


Assuntos
Interferons , Neoplasias Pancreáticas , Humanos , Prognóstico , Multiômica , Biomarcadores , 2',5'-Oligoadenilato Sintetase/genética
20.
Langmuir ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37939229

RESUMO

Covalent organic frameworks (COFs) are a promising class of adsorption and separation materials that can meet the needs of ecological sustainability, such as the removal of carbon dioxide and organic dyes. The two synthesized (3,3)-connected triazine-based COFs demonstrate high specific surface area and good thermal and chemical stability. COFZ1 shows good CO2 adsorption selectivities for different CO2 and N2 volume percentage systems at 273 K and 1 bar, with an ideal adsorbed solution theory (IAST) CO2 selectivity (i.e., separation factor) of 35.09 for the simulated flue gas component and a CO2 adsorption capacity of 24.21 cm3 g-1. In the aqueous dye solutions, both COFs present good adsorption performance for the selected dyes, and the maximum adsorption capacities of COFZ1 for methylene blue (MB) and gentian violet (GV) reach 510 and 564 mg g-1, respectively. Each of the two COFs shows a high anti-interference performance and excellent recyclability. The adsorption capacities of two COFs for RhB (Rhodamine B), MB, and GV hardly vary with pH values and salt concentrations. The adsorption behaviors of the two COFs for dyes follow Langmuir isothermal adsorption and quasi-secondary kinetic adsorption, approaching monolayer adsorption and chemisorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...