RESUMO
The highly toxic heavy metal thallium is widely distributed in sulfide ores and released into the environment by sulfide mining. However, the interface between the sulfide minerals and Tl(I) is unclear. In this study, the capacity for adsorption of thallium(I) by a common sulfide mineral (zinc sulfide) was investigated in aerobic and anaerobic environments, which revealed three mechanisms for adsorption on the ZnS surface (surface complexation, electrostatic action and oxidation promotion). Batch experiments indicated that the Tl(I) adsorption capacity of ZnS in an aerobic environment was approximately 9.3% higher than that in an anaerobic environment and was positively correlated with the pH. The adsorption kinetic data showed good fits with the pseudosecond-order model and the Freundlich isotherm model. The Tl(I) adsorption mechanism varied in different oxidative and pH environments. XPS, FTIR, and EDS results implied that complexation with surface hydroxyl groups was involved in the adsorption process. pH experiments and zeta analyses suggested that electrostatic attraction was also involved. Surface complexation and electrostatic attraction were the dominant mechanisms at pH values above 6. Furthermore, oxidative dissolution of ZnS and hydrolysis of Zn2+ enhanced the complexation with hydroxyl groups on the mineral surface and facilitated Tl adsorption. In this study, this interface mechanism provided new insights into thallium migration in sulfurized mineral environments in aerobic and anaerobic transition regions.
RESUMO
BACKGROUND: Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS: Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 µg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION: Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ge Gen Decoction (GGD) is a classic traditional Chinese medicine (TCM) prescription that originated in the ancient Chinese medical book "Treatise on Febrile Diseases". The prescription consists of 7 herbs: Pueraria lobata (Willd.) Ohwi, Ephedra sinica Stapf, Cinnamomum cassia (L.) J.Presl, Paeonia lactiflora Pall., Glycyrrhiza uralensis Fisch., Zingiber officinale Rosc., and Ziziphus jujuba Mill. It can alleviate high fever and soreness in the neck and shoulders caused by exogenous wind chill and is widely used in both China and Japan. Currently, GGD is primarily utilized for treating flu and the common cold. GGD has been reported to show significant anti-influenza A virus (IAV) activity both in vitro and in vivo. However, the active ingredients responsible for its anti-influenza properties have not been elucidated, and the mechanisms underlying its anti-influenza effects require further research. AIM OF THE STUDY: This study aims to investigate the active ingredients and molecular mechanisms of GGD in treating influenza. MATERIALS AND METHODS: HPLC chromatograms were established for GGD water and different polar extracts. The effect of different GGD extracts on pulmonary virus titers and TNFα expression was assessed through RT-PCR analysis. Spectrum-effect relationships between chromatographic peaks of GGD and its virus inhibition rate and TNFα inhibition rate were investigated using partial least squares regression (PLSR) analysis. HPLC-Q-TOF-MS was utilized to identify the constituents absorbed into the blood after oral administration of GGD. Network analysis of the absorbed forms of active ingredients was conducted to predict the potential mechanisms of GGD. Subsequently, total SOD activity, CAT and HO-1 expression and Nrf2 nuclear translocation were then analyzed. Finally, the impact of interfering with HO-1 expression on the anti-IAV activity of GGD was examined. RESULTS: The study identified 11 anti-influenza active ingredients in GGD, which are daidzein, ononin, genistin, daidzin, 3'-methoxypuerarin, puerarin, pseudoephedrine, paeoniflorin, pormononetin-7-xylosyl-glucoside, penistein-7-O-apiosyl-glucoside, and ephedrine. Network analysis revealed various biological activities of GGD, including responses to ROS and oxidative stress. GGD also involves multiple antiviral pathways, such as hepatitis B, IAV, and Toll-like receptor pathways. Experimental assays demonstrated that GGD possesses independent antioxidant activity both in vitro and in vivo. In vitro, GGD inhibits the increase in intracellular ROS induced by IAV. In vivo, it reduces MDA levels and increases total pulmonary SOD activity. Applying siRNA and flow cytometry analysis revealed that GGD alleviates IAV-induced oxidative burst by promoting the expression of HO-1 and CAT. Western blot analysis revealed that GGD effectively promotes Nrf2 nuclear translocation and enhances Nrf2 expression. Furthermore, this study found that the enhancement of HO-1 expression by GGD contributed to its anti-IAV activity. CONCLUSIONS: The study identified the active ingredients of GGD against influenza and demonstrated the beneficial role of GGD's antioxidant activity in treating flu. The antioxidant activity of GGD is associated with the promotion of Nrf2 nuclear translocation and the upregulation of antioxidant enzymes such as SOD, HO-1, and CAT. Overall, this study provides evidence supporting the use of GGD as an adjunctive or complementary therapy for influenza.
Assuntos
Medicamentos de Ervas Chinesas , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Fator de Necrose Tumoral alfa , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Glucosídeos/uso terapêutico , Superóxido DismutaseRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Huaier (Trametes robiniophila Murr), a traditional Chinese medicinal fungus, possesses potent anticancer efficacy and has been used as an adjuvant medication for liver, breast, gastric, intestinal, and non-small cell lung cancer (NSCLC). However, the potential regulatory functions and underlying molecular mechanisms of Huaier in cisplatin resistance of NSCLC remain unknown. AIM: To evaluate the potential regulatory functions and underlying molecular mechanisms of Huaier in cisplatin resistance of NSCLC. MATERIALS AND METHODS: In vitro and in vivo experiments were employed to evaluate the regulatory functions of Huaier in cisplatin-resistant NSCLC cells. Transcriptome sequencing and validation analyses was undertaken to identify the downstream targets of Huaier. Network pharmacology, ultra-performance liquid chromatography-mass spectroscopy, and in vitro and in vivo experiments were performed to identify key small molecule drug candidates in Huaier and the regulatory mechanisms these employ to suppress cisplatin resistance in NSCLC. RESULTS: Huaier suppressed cisplatin resistance and cancer cell stemness in cisplatin-resistant NSCLC cells, both in vitro and in vivo. Mechanistically, Huaier could suppress expression of interleuken-8 (IL-8) through inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein-1 (AP-1), two key transcription factors responsible for the activation of IL-8 transcription. Kaempferol was identified as one of the key small molecule compounds in Huaier that could suppress cisplatin resistance by inhibiting the phosphorylation and nuclear translocation of proto-oncogene c-Jun (JUN) by binding and inhibiting the kinase activity of c-Jun N-terminal protein kinase (JNK). CONCLUSIONS: Huaier suppressed cisplatin resistance of NSCLC cells by inhibiting the JNK/JUN/IL-8 signaling pathway.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Trametes/química , Trametes/metabolismo , Fator de Transcrição AP-1/metabolismo , Interleucina-8 , Transdução de Sinais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linhagem Celular TumoralRESUMO
Molecular weight is one of the main characteristic parameters of proteins, which is the basis for the functional properties of milk protein. This research aims at establishing molecular weight distribution pattern of milk protein based on exclusion chromatography. The method selected Na3PO4-Na2SO4 (0.1 M, pH 6.7) buffer as the mobile phase and detected at 220 nm by HPLC-UV. The protein molecular weight distributions were determined and compared for human milk, bovine milk, and infant formula. The proportion of macromolecular proteins is much higher in infant formula compared to human or bovine milk. The protein molecular weights of human and bovine milk are significantly different around 90, 20, 14, and 2 kDa. The results provide holistic compare of bovine milk, human milk, and infant formula through protein molecular distribution. The new evaluation indicators for protein will drive technological simulation of infant formula.
Assuntos
Proteínas do Leite , Leite Humano , Lactente , Feminino , Humanos , Proteínas do Leite/química , Peso Molecular , Leite Humano/química , Fórmulas Infantis/química , Cromatografia em GelRESUMO
Postharvest loquat fruit is susceptible to chilling injury (CI) under cold stress. In this study, the effects of phytosulfokine α (PSKα) on sugar, proline, polyamine and γ-aminobutyric acid (GABA) metabolisms in loquat fruit during cold storage were investigated. The results showed that PSKα treatment significantly increased PSKα content along with up-regulating EjPSK3 and EjPSK6 expressions, and inhibited the increases of internal browning index, electrolyte leakage and malondialdehyde (MDA) content of loquat fruit. Besides, PSKα treatment maintained higher reducing sugar, proline, polyamines, and GABA contents in loquat fruit via activating biosynthesis pathway and suppressing catabolism pathway. More importantly, the results of correlation analysis indicated that PSKα content displayed positive correlations with reducing sugar, proline, polyamines and GABA contents. These findings suggested that the improved chilling tolerance in PSKα-treated loquat fruit was due to enhancing reducing sugar, proline, polyamines, and GABA contents, which might be modulated by endogenous PSKα signaling.
Assuntos
Poliaminas , Açúcares , Poliaminas/metabolismo , Açúcares/metabolismo , Prolina/metabolismo , Frutas/metabolismo , Carboidratos , Ácido gama-Aminobutírico/metabolismo , Temperatura BaixaRESUMO
BACKGROUND: Depressive and anxiety symptoms (depression and anxiety hereafter) are common among psychiatric patients and their caregivers during the COVID-19 pandemic. Network analysis is a novel method to assess the associations between psychiatric syndromes/disorders at the symptom level. This study examined depression and anxiety among caregivers of psychiatric inpatients during the late stage of the COVID-19 pandemic from the perspective of network analysis. METHODS: A total of 1101 caregivers of psychiatric inpatients were included in this study. The severity of depression was assessed using the nine-item Patient Health Questionnaire (PHQ-9), while anxiety was assessed with the seven-item Generalized Anxiety Disorder Scale (GAD-7). The expected index (EI) and bridge EI index were used to identify the central and bridge symptoms, respectively. The stability of the network was evaluated via a case-dropping bootstrap procedure. RESULTS: The prevalence of depression and anxiety were 32.4 % (95%CI: 29.7 %-35.3 %) and 28.0 % (95%CI: 25.4 %-30.7 %), respectively while the prevalence of comorbid depression and anxiety was 24.9 % (95%CI: 22.4 %-27.6 %). The most central symptom was "Fatigue", followed by "Trouble Relaxing" and "Restlessness". The highest bridge symptom was "Restlessness", followed by "Uncontrollable worry" and "Suicide ideation". The bootstrap test indicated that the whole network model was stable, and no network difference was detected between genders and between different education levels. CONCLUSIONS: Depression, anxiety, and comorbid depression and anxiety were common among caregivers of psychiatric inpatients during the late stage of the COVID-19 pandemic. Central and bridge symptoms identified in this network analysis should be considered key target symptoms to address in caregivers of patients.
Assuntos
COVID-19 , Depressão , Humanos , Feminino , Masculino , Depressão/psicologia , Cuidadores/psicologia , Pandemias , COVID-19/epidemiologia , Ansiedade/psicologiaRESUMO
BACKGROUND: Sarcopenia and cardiometabolic risk factors are very common in the middle-aged and older population. This study aimed to explore the joint effect of sarcopenia and cardiometabolic risk factors on cognitive performance and cognitive decline. METHODS: The definition of sarcopenia status was referenced in the AWGS 2019 algorithm. Linear regression models were used to explore the association of sarcopenia status with cognitive performance at baseline. Mixed effect models and multinomial logistic regression models were used to evaluate the long-term effect of sarcopenia status. The additive interaction between the effects of sarcopenia and cardiometabolic risk factors on cognitive performance was also evaluated. RESULTS: In the cross-sectional analysis, sarcopenia and possible sarcopenia were associated with worse cognitive performance. In the longitudinal analysis, the participant with sarcopenia had a 0.34 [95 % CI (-0.43, -0.24)] lower global cognition score, and those with possible sarcopenia had a 0.20 [95 % CI (-0.27, -0.14)] lower global cognition score, compared with participants with no-sarcopenia. Sarcopenia and possible sarcopenia were identified as significant risk factors for cognitive decline. Sarcopenia combined with hypertension, type 2 diabetes, dyslipidemia, or abdominal obesity was associated with worse cognitive function. LIMITATIONS: The assessment of cognitive function was not diagnosed accurately. CONCLUSIONS: Sarcopenia and possible sarcopenia had adverse effects on cognitive performance and cognitive decline, sarcopenia combined with cardiometabolic risk factors can significantly enhance these effects. Therefore, the prevention of sarcopenia in the older population is crucial.
Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Sarcopenia , Pessoa de Meia-Idade , Humanos , Idoso , Sarcopenia/complicações , Sarcopenia/epidemiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco Cardiometabólico , Estudos Transversais , Cognição , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/complicaçõesRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine posits that affect-mind ill-being is the primary cause of depression, with Qi movement stagnation as its pathogenesis. As such, clinical treatment for depression should prioritize regulating Qi and relieving depressive symptoms. The pharmacological properties of traditional Chinese medicine indicate that Perilla frutescens may have potential therapeutic effects on depression and other neuropsychiatric diseases due to its ability to regulate Qi and alleviate depressive symptoms. Although previous studies have reported the antidepressant effects of Perilla frutescens, the mechanism underlying PFEO inhalation-mediated antidepressant effect remains unclear. AIM OF THE STUDY: The aim of this investigation is to elucidate the antidepressant mechanisms of PFEO by examining its effects on monoamine neurotransmitters and the BDNF/TrkB signaling pathway. MATERIALS AND METHODS: The CUMS rat model of depression was established, and the depressive state of the animals was assessed through sucrose preference and forced swim tests. ELISA assays were conducted to determine monoamine neurotransmitter levels in the hippocampus and cerebral cortex of rats. Immunohistochemistry, western blotting, and RT-PCR experiments were employed to investigate the BDNF/TrkB signaling pathway's regulation of depression via PFEO inhalation. RESULTS: It has been observed that inhalation administration of PFEO can significantly enhance the preference for sugar water in CUMS rats and reduce their immobility time during forced swimming. Additionally, there was an increase in the levels of monoamine transmitters in both the hippocampus and cerebral cortex of these rats. Furthermore, there was an upregulation in the expression levels of BDNF and TrkB positive cells as well as BDNF and TrkB proteins within both regions, along with increased BDNF mRNA and TrkB mRNA expression levels. CONCLUSION: The antidepressant effect of PFEO via inhalation administration is speculated to be mediated through the monoamine neurotransmitters and BDNF/TrkB signaling pathway.
Assuntos
Óleos Voláteis , Perilla frutescens , Ratos , Animais , Perilla frutescens/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transdução de Sinais , Hipocampo , Neurotransmissores/metabolismo , RNA Mensageiro/metabolismo , Depressão/metabolismo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de DoençasRESUMO
Dried scallops are a typical shellfish commodity, but the molecular change mechanism in the drying process is not clear. In this paper, the effect of drying on the flavor of scallops was revealed by integrated metabolomic and lipidomic analysis. The results showed that 70 °C was the best temperature for hot air drying, and the moisture content of the scallops was less than 20% after 12 h of drying, which meets the commercial standards for dried scallops. A total of 53 volatile compounds were detected in dried scallops, of which 2,5-dimethyl pyrazine and tetramethyl pyrazine, as characteristic flavor compounds, changed significantly during drying. In addition, taste peptides such as Arg-Gly and Gly-Gly, produced by protein degradation during drying, may contribute to the umami perception of dried scallops. This study helped to increase the overall quality of dried scallops.
Assuntos
Lipidômica , Pectinidae , Animais , Metabolômica , Alimentos MarinhosRESUMO
Corneal neuromas, also termed microneuromas, refer to microscopic, irregularly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury. The formation of corneal neuromas results from damage to corneal nerves, such as following corneal pathology or corneal or intraocular surgeries. Initially, denervated areas of sensory nerve fibers become invaded by sprouts of intact sensory nerve fibers, and later injured axons regenerate and new sprouts called neuromas develop. In recent years, analysis of corneal nerve abnormalities including corneal neuromas which can be identified using in vivo confocal microscopy, a non-invasive imaging technique with microscopic resolution, has been used to evaluate corneal neuropathy and ocular surface dysfunction. Corneal neuromas have been shown to be associated with clinical symptoms of discomfort and dryness of eyes, and are a promising surrogate biomarker for ocular surface diseases, such as neuropathic corneal pain, dry eye disease, diabetic corneal neuropathy, neurotrophic keratopathy, Sjögren's syndrome, bullous keratopathy, post-refractive surgery, and others. In this review, we have summarized the current literature on the association between these ocular surface diseases and the presentation of corneal microneuromas, as well as elaborated on their pathogenesis, visualization via in vivo confocal microscopy, and utility in monitoring treatment efficacy. As current quantitative analysis on neuromas mainly relies on manual annotation and quantification, which is user-dependent and labor-intensive, future direction includes the development of artificial intelligence software to identify and quantify these potential imaging biomarkers in a more automated and sensitive manner, allowing it to be applied in clinical settings more efficiently. Combining imaging and molecular biomarkers may also help elucidate the associations between corneal neuromas and ocular surface diseases.
RESUMO
Understanding the impacts of climate warming on hydrogeochemical processes, particularly in areas dominated by permafrost, is crucial. However, the natural background levels of chemical components in eastern Siberian rivers from permafrost-dominated regions and their responses to climate warming have not been adequately quantified. This study aims to address this knowledge gap by using a comprehensive river water chemistry database (n = 1264) spanning from 1940 to 2019. Our results reveal that the concentration of total dissolved solids (TDS), a key parameter of drinking water quality, in river basins predominantly free of permafrost (194.6 ± 256.4 mg/L) is approximately 2.3 times higher than in permafrost-dominated river basins (83.7 ± 35.8 mg/L) in eastern Siberia. These observations imply potential shifts in freshwater quality resulting from permafrost degradation. We further detect that carbonate weathering, which plays a fundamental role in the global carbon cycle, is a predominant process controlling hydrogeochemical cycles. (Ca2+ + Mg2+) concentrations as a proxy for carbonate weathering intensity are sensitive to climate warming, increasing at a rate of 0.10 mmol/(L·°C). This finding provides evidence that the current acceleration of carbonate weathering, driven by climate warming, is already influencing local water quality. Additionally, (Ca2+ + Mg2+) concentrations and TDS are highly interrelated with temperature-dependent variables (e.g., active layer thickness of permafrost and leaf area index) and basin erosion-controlling factors (e.g., precipitation, elevation and slope of basin). Under a warming climate, river chemical fluxes (e.g., export of TDS and major ions) increase notably, especially during the winter, indicating an increase in mineral-laden groundwater discharge to rivers due to permafrost degradation. Our results demonstrate that climate warming is accelerating hydrogeochemical processes in permafrost-dominated Arctic basins.
RESUMO
Nitrogen-containing heterocyclic compounds (NHCs) are hazardous, toxic, and persistent pollutants, thereby requiring urgent solutions. Herein, ZIF-67 was compounded with powder-activated carbon (PAC) to prepare Co/NC/PAC (NC i.e. nitrogen-doped carbon) particle electrodes for the electrocatalytic treatment of pyridine and diazines. Co/NC/PAC reflected the confinement of Co3O4/CoN/Co0 into the N-doped graphitic-carbon layer to generate both pyrrolic-N and graphitic-N active sites. Under the optimal conditions (0.3 A, 12 mL min-1, and initial pH 7.00), the degradation of four NHCs realized 90.2-93.7% efficiencies. The number and position of N atoms in NHCs directly affected the degradation efficiency. The following increasing order of facilitated degradation was recorded: pyridazine < pyrimidine < pyrazine < pyridine. The as-obtained Co/NC/PAC possessed the direct redox effect on NHCs, achieving fast electrocatalytic rate. Species like ·OH and H* were detected in Co/NC/PAC system with contributions to NHCs degradation estimated to 24% and 34%, respectively. Density functional theory (DFT) calculations revealed H* susceptible to attacking the N position, while the meta-position of C was subject to hydroxyl radical (·OH) addition. Overall, degradation of NHCs was achieved by hydro-reduction, oxidation, ring opening cleavage, hydroxylation, and mineralization. Ring-cleavage and mineralization of NHCs provided a novel electrochemical strategy to refractory wastewater treatment.
RESUMO
INTRODUCTION: The optimal management strategy for pancreatic trauma remains unclear. We aimed to determine whether the initial nonoperative management (NOM) strategy based on percutaneous drainage combined with endoscopic retrograde cholangiopancreatography guided stent placement would improve outcomes for blunt high-grade pancreatic trauma. METHODS: Patients with blunt abdominal trauma who were hemodynamically stable without signs of diffuse peritonitis were consecutively enrolled at a high-volume center. The primary outcome was the occurrence of severe complications (ClavienâDindo classification ≥ â ¢b) for patients who underwent initial laparotomy (LAP) versus NOM. Modified Poisson regression was used to model the primary outcome. Propensity score matching and weighting models were included into a regression-based sensitivity analysis. RESULTS: Of 119 patients with grade III/IV pancreatic trauma, 29 patients underwent initial NOM, and 90 underwent initial LAP. The incidence of severe complications in the LAP group was higher than that in the NOM group (65/90 [72.2%] versus 9/29 [31.0%], P < 0.001). In the multivariable modified Poisson regression model, the relative risk for severe complications was decreased in the NOM group (relative risk, 0.52; 95% confidence interval, 0.30-0.90; P = 0.020). The results of the sensitivity analysis were consistent with those of the multivariable analysis. The mean number of reinterventions per patient was 1.8 in the NOM group and 2.6 in the LAP group (P = 0.067). CONCLUSIONS: For blunt high-grade pancreatic trauma patients with stable hemodynamics and no diffuse peritonitis, the NOM strategy was associated with a lower risk of severe complications (ClavienâDindo classification ≥ â ¢b) and did not require more invasive reintervention procedures. In high-volume centers with sufficient expertise, percutaneous drainage combined with endoscopic retrograde cholangiopancreatography guided stent placement may serve as an initial reasonable option for selected patients.
Assuntos
Traumatismos Abdominais , Pancreatopatias , Peritonite , Ferimentos não Penetrantes , Humanos , Estudos Retrospectivos , Pâncreas/diagnóstico por imagem , Pâncreas/cirurgia , Pâncreas/lesões , Pancreatopatias/diagnóstico , Abdome , Traumatismos Abdominais/diagnóstico , Traumatismos Abdominais/cirurgia , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/diagnóstico , Ferimentos não Penetrantes/cirurgia , Peritonite/complicações , Escala de Gravidade do Ferimento , Resultado do Tratamento , Centros de TraumatologiaRESUMO
Although particulate Fe has a significant impact on human health, atmospheric chemical reactions, air quality, climate change, and ecosystems, there is a lack of long-term continuous hourly observation on particulate Fe in the megacity of Beijing, limiting research on these issues. To address this gap, this study continuously measured hourly concentrations of Fe in PM2.5 from October 2018 to October 2022 in Beijing. The results indicate an overall decline in Fe concentrations, consistent with previous studies in Beijing. This decline can be attributed to multiple factors, such as reduced coal consumption, restrictions on biomass burning, increased use of clean energy, advanced technologies for industrial emission reduction, and efforts to control fugitive dust. Seasonal variations in Fe concentrations were similar across the various years, with higher mean concentrations in spring, fall, and winter, and lower levels in summer. Daily variations in PM2.5-bound Fe concentrations exhibited two peaks, influenced by changes in emission intensity and the evolution of the planetary boundary layer. The solubility of PM2.5-bound Fe exhibited a wide range, varying from 4 % to 95 %, surpassing previously reported source-specific values. This variability can be attributed to acid dissolution effects and complexation behaviors. Nonparametric wind regression analysis identified distinct hotspots (higher concentrations) in the northwest wind sector at wind speeds of approximately 5-15 km/h, which are associated with blowing dust and dust storms. Additionally, the potential source contribution function analysis identified high-potential source areas were precisely located in the northwestern, western, and southern regions of Beijing, rather than primarily in the southern areas recorded in a previous study. This research provides valuable insights for studying the health effects and migration and transformation of nutrient elements, particularly particulate Fe, in Beijing.
RESUMO
In this study, a novel, highly sensitive fluorescent sensor (E)-2-((2-(benzo[d] thiazol-2-yl) quinolin-8-yl) oxy)-N'-(4-(5, 5-difluoro-1, 3, 7, 9-tetramethyl-5H-4λ4, 5λ4-dipyrrolo [1, 2-c:2', 1'-f] [1, 3, 2] diazaborinin-10-yl) benzylidene) acetohydrazide (TQB) was developed for dual mode of Ag+ detection (colorimetric/fluorescence), and its structural and spectral properties were characterized by 1H NMR, ESI-MS, X-ray, ultraviolet and fluorescence photometry. It is found that TQB could specifically and efficiently identify Ag+ among many other metal ions in CH3OH/H2O (7:3 v/v, pH = 7.23) buffer. The maximum absorption wavelength of TQB is red-shifted while its fluorescence is quenched with a quenching rate of 88.7%. The energy difference between TQB and TQB-Ag+ complex was calculated by DFT, and the applicability of TQB was verified by paper strip test. In addition, TQB has been successfully applied to the determination of Ag+ in real water samples with good reversibility and recoveries.
RESUMO
The flavor of Pacific oyster (Crassostrea gigas) significantly changed during the depuration process. This work aimed to explore the mechanism of flavor changes during the 72 h depuration by metabolomics combined with gas chromatography-ion mobility spectrometry (GC-IMS). The metabolomics analysis indicated that carbohydrate metabolism was more affected in the early stage of depuration, including the citrate cycle, glyoxylae and dicarboxylate metabolism, etc. After 72 h depuration, it affected mainly the metabolism of global and overview maps and nucleoside metabolism, etc. The equivalent umami concentration (EUC) value was calculated and exhibited a gradual increase following a 48 h depuration. The GC-MS results revealed that the content of furans was the highest, and the content of aldehydes, ketones, and alcohols was the lowest after 48 h depuration, while the content of aldehydes, ketones, and alcohols increased after 72 h depuration. All these results suggested the depuration period was recommended to be controlled within 48 h.
Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas/metabolismo , Aldeídos/metabolismoRESUMO
CD46 can facilitate the production of IgE. Activation of CD46 may contribute to the pathogenesis of allergic diseases. The aim of this study is to elucidate the association between CD46 expression in B cells and the pathogenesis of airway allergy. In this study, peripheral B cells were collected from a group of patients suffering from allergic rhinitis (AR). An AR mouse model was established to test the role of CD46 in the development of airway allergy. The results showed elevated amounts of IGE in peripheral CD46+ B cells of AR patients. CD46+ B cells of AR patients showed high reticulum endoplasmic (ER) stress status. The expression of CD46 in peripheral B cells was positively associated with the AR response in patients. The production of IgE in mice with airway allergy was prevented by ablating CD46 expression in B cells. Exposure to aluminum hydroxide up regulated the expression of Cd46 in B cells through exacerbating ER stress. Administration of Cd46 shRNA carrying nanoparticles attenuated experimental airway allergy. In conclusion, peripheral B cells in AR patients display elevated CD46 expression. Cd46 ablation in B cells can mitigate the production of IgE in mice and attenuate experimental airway allergy.
Assuntos
Imunoglobulina E , Rinite Alérgica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Proteína Cofatora de Membrana/genética , Rinite Alérgica/metabolismoRESUMO
The DM9-containing proteins have been identified as pattern recognition receptors (PRRs) to recognize invading pathogens and subsequently mediate downstream signal pathways, playing essential roles in innate immune responses of molluscs. In the present study, a novel DM9-containing protein (named as CgDM9CP-7) was identified from Pacific oyster Crassostrea gigas, which contained two tandem DM9 repeats similar to the previously identified CgDM9CPs. The mRNA transcripts of CgDM9CP-7 were found to be constitutively expressed in all the tested tissues including haemolymph, gill, hepatopancreas, mantle, adductor muscle and labial palp. The expression level of CgDM9CP-7 mRNA in haemocytes significantly up-regulated at 3 and 6 h after Vibrio splendidus stimulation, which was 5.67-fold (p < 0.01) and 4.71-fold (p < 0.05) of that in the control group, respectively, and it also increased significantly at 6 h (3.08-fold, p < 0.01) post lipopolysaccharide (LPS) stimulation. The protein of CgDM9CP-7 was mainly detected in membrane and cytoplasm of oyster haemocytes after V. splendidus stimulation. The recombinant CgDM9CP-7 protein (rCgDM9CP-7) displayed binding activities to MAN, LPS, PGN, Poly (I:C) as well as gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus) and fungi (Pichia pastoris and Yarrowia lipolytica). rCgDM9CP-7 was able to agglutinate Bacillus subtilis, V. splendidus, E. coli and S. aureus, inhibit their growth, and bind the recombinant protein CgMyd88-2 (KD = 5.98 × 10-6 M) and CgMyd88s (KD = 8.5 × 10-7 M) in vitro as well. The transcripts of CgIL17-1 (0.45-fold of the control group, p < 0.01), CgIL17-2 (0.19-fold, p < 0.05), CgIL17-3 (0.54-fold, p < 0.05), CgIL17-5 (0.36-fold, p < 0.05) and CgIL17-6 (0.24-fold, p < 0.01) in CgDM9CP-7-siRNA oysters decreased significantly at 6 h after V. splendidus stimulation. These results collectively indicated that CgDM9CP-7 was involved in the regulation of CgMyD88 and CgIL-17 expression in the immune response of oyster.
Assuntos
Crassostrea , Yarrowia , Humanos , Animais , Lipopolissacarídeos , Staphylococcus aureus , Escherichia coli/genética , Imunidade Inata/genética , Proteínas Recombinantes/metabolismo , RNA Mensageiro/genética , HemócitosRESUMO
New strategies to remove antibiotic resistance genes (ARGs), one of the most pressing threats to public health, are urgently needed. This study showed that the fungus Phanerochaete chrysosporium seeded to a composting reactor (CR) could remarkably reduce tetracycline-resistant genes (TRGs). The reduction efficiencies for the five main TRGs (i.e., tetW, tetO, tetM, tetPA, and tet(32)) increased by 8 to 100 folds compared with the control without P. chrysosporium, and this could be attributed to the decrease in the quantity of bacteria. Enumeration based on green fluorescence protein labeling further showed that P. chrysosporium became dominant in the CR. Meanwhile, the bacteria in the CR invaded the fungal cells via the cell wall defect of chlamydospore or active invasion. Most of the invasive bacteria trapped inside the fungus could not survive, resulting in bacterial death and the degradation of their TRGs by the fungal nucleases. As such, the predation of tetracycline-resistant bacteria by P. chrysosporium was mainly responsible for the enhanced removal of TRGs in the swine manure treatment. This study offers new insights into the microbial control of ARGs.