RESUMO
[FeFe] hydrogenases demonstrate remarkable catalytic efficiency in hydrogen evolution and oxidation processes. However, susceptibility of these enzymes to oxygen-induced degradation impedes their practical deployment in hydrogen-production devices and fuel cells. Recent investigations into the oxygen-stable (Hinact) state of the H-cluster revealed its inherent capacity to resist oxygen degradation. Herein, we present findings on Cl- and SH-bound [2Fe-2S] complexes, bearing relevance to the oxygen-stable state within a biological context. A characteristic attribute of these complexes is the terminal Cl-/SH- ligation to the iron center bearing the CO bridge. Structural analysis of the t-Cl demonstrates a striking resemblance to the Hinact state of DdHydAB and CbA5H. The t-Cl/t-SH exhibit reversible oxidation, with both redox species, electronically, being the first biomimetic analogs to the Htrans and Hinact states. These complexes exhibit notable resistance against oxygen-induced decomposition, supporting the potential oxygen-resistant nature of the Htrans and Hinact states. The swift reductive release of the Cl-/SH-group demonstrates its labile and kinetically controlled binding. The findings garnered from these investigations offer valuable insights into properties of the enzymatic O2-stable state, and key factors governing deactivation and reactivation conversion. This work contributes to the advancement of bio-inspired molecular catalysts and the integration of enzymes and artificial catalysts into H2-evolution devices and fuel-cell applications.
RESUMO
The rotation of a C = C bond in an alkene can be efficiently accelerated by creating the high-strain ground state and stabilizing the transition state of the process. Herein, the synthesis, structures, and properties of several highly twisted alkenes are comprehensively explored. A facile and practical synthetic approach to target molecules is developed. The twist angles and lengths of the central C = C bonds in these molecules are 36-58° and 1.40-1.43 Å, respectively, and confirmed by X-ray crystallography and DFT calculations. A quasi-planar molecular half with the π-extended substituents delivers a shallow rotational barrier (down to 2.35 kcal/mol), indicating that the rotation of the C = C bond is as facile as that of the aryl-aryl bond in 2-flourobiphenyl. Other versatile and unique properties of the studied compounds include a broad photoabsorption range (from 250 up to 1100 nm), a reduced HOMO-LUMO gap (1.26-1.68 eV), and a small singlet-triplet energy gap (3.65-5.68 kcal/mol).
RESUMO
A dimeric dithiolate-bridged species, [Fe(NO)(PS2)]2 (1) containing two {FeNO}7 units, can be isolated by treating [Fe(CO)2(NO)2] with PS2H2 (PS2H2 = bis(2-dimercaptophenyl)phenylphosphine). Crystallographic studies reveal the syn-configuration of NO units and the bridging thiolates in the butterfly shape of the 2Fe2S core. Addition of PPh3 to the solution of dinuclear 1 leads to the formation of mononuclear {FeNO}7 [Fe(NO)(PS2)(PPh3)] (2) that shows electrochemical responses similar to those of 1. One-electron reduction of 1 with Cp*2Co or KC8 results in the isolation of thiolate-bridged bimetallic DNIC, [(PS2)Fe(µ-PS2)Fe(NO)2]- ([3]-), confirmed by several spectroscopies including single-crystal X-ray diffraction studies. The bimetallic DNIC [3]- is a rare example obtained from the one-electron reduction of a dinuclear Fe-NO {FeNO}7 model complex. With the assistance of redox behaviors of 2, electrochemical studies imply that the reduction of 1 leads to the formation of a mononuclear {FeNO}8 [Fe(NO)(PS2)(THF)]- intermediate, which involves disproportionation or NO- transfer to yield [3]-. Based on IR data and magnetic properties, the electronic structure of [3]- can be described as a FeII/{Fe(NO)2}9 state. Isolation of the {Fe(NO)2}9 moiety coordinated by the Fe ancillary complex lends strong support to the NO scrambling behavior in the effectiveness of the activity of flavodiiron nitric oxide reductases (FNORs).
Assuntos
Ferro , Óxido Nítrico , Cristalografia por Raios X , Compostos Ferrosos , Ferro/química , Óxido Nítrico/química , Oxirredutases/químicaRESUMO
Carbon monoxide (CO) plays an important role in signaling in cells, making its use as a therapeutic tool highly intriguing. Reduced burst emissions are important to avoid the cytotoxicity and tissue damage caused by CO. Here, we developed a stable diiron carbonyl [FeFe] hydrogenase agent that enables prolonged CO release activity (half-life of over 9 h) in cells. The integrated analysis allowed the identification of the key intermediate sites and CO accumulations with subcellular resolution. We observed that the [FeFe]A complex was enriched in neurons with S-methyl bond rupture. Furthermore, the [FeFe]A complex efficiently reduced the aggregation of tau proteins (49.3% reduction) and showed superior biocompatibility in nerve cells (â¼ 95% survival).
Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Monóxido de Carbono/química , Domínio Catalítico , Desmetilação , Hidrogenase/química , Proteínas Ferro-Enxofre/químicaRESUMO
A series of diindeno[2,1-b:2',1'-h]biphenylenes with open-shell singlet ground states and interesting properties were prepared. The studied compounds consist of p-quinodimethane moieties, which suffer from geometric perturbation with bond angles of around 90°. The substituent effects on structural parameters, local aromaticity, and properties were systematically explored.
RESUMO
The synthesis, structural characteristics, and photophysical properties of luminescent Cu-rich bimetallic superatomic clusters [Au@Cu12(S2CNnPr2)6(C≡CPh)4]+ (1a+), [Au@Cu12{S2P(OR)2}6(C≡CPh)4]+ (2+), (2a+ = iPr; 2b+ = nPr), [Au@Cu12{S2P(C2H4Ph)2}6(C≡CPh)4]+ (2c+), and [Ag@Cu12{S2P(OnPr)2}6(C≡CPh)4]+ (3+) were studied. Compositionally uniform clusters 1+-3+ were isolated from the reaction of dithiolato-stabilized, polyhydrido copper clusters with phenylacetylene in the presence of heterometal salts. By using X-ray diffraction, the structures of 1a+, 2a+, 2b+, and 3+ were able to be determined. ESI-mass spectrometry and elemental analysis confirmed their compositions and purity. The structural characteristics of these clusters are similar with respect to displaying gold (or silver)-centered Cu12 cuboctahedra surrounded by six dithiocarbamate/dithiophosph(in)ate and four alkynyl ligands. The doping of Au and Ag atoms into the polyhydrido copper nanoclusters significantly enhances their PL quantum yields from Ag@Cu12 (0.58%) to Au@Cu12 (55%) at ambient temperature in solution. In addition, the electrochemical properties of the new alloys were investigated by cyclic voltammetry.
RESUMO
We report the syntheses, structures, magnetic and electrochemical properties of MRhRh metal cores helically wrapped by four dpa- (2,2'-dipyridylamide) ligands. We successfully synthesized the precursor Rh2(dpa)4 (1) in high yield and characterized its structure including its oxidized form (1+) which facilitated the syntheses of this series of metal springs. By the reactions of (1) and the metal ions of group 7 to group 12 (M = Mn(2), Fe(3), Co(4), Ni(5), Cu(6), Pd(8), Pt(9), Ru(10), Ir(11) and Rh(12)), ten MRh2(dpa)4Cl2 complexes were successfully isolated. Note that Cd(7) can only be obtained by the one-pot method. The yield of Rh3(dpa)4Cl2 (12) is also improved by this stepwise method. The oxidized complexes [MRh2(dpa)4Cl2](PF6) (M: Ni(5+), Ru(10+), Ir(11+)) are also synthesized for the studies of electronic structures and magnetic properties. The X-ray diffraction technique is applied to characterize all of their structures. The results of these structural, magnetic, and electrochemical studies provide us with in-depth knowledge and comprehensive insight into metal-metal bonds and interactions for this new series of metal strings. In particular, four metal-metal bonds with short distances are found: Pd-Rh (2.372(13) Å), Pt-Rh (2.385(7) Å), Ru-Rh (2.33(3) Å), and Ir-Rh (2.373(5) Å). The remaining ones show no evidence of covalent metal bonds judging from their metal-metal distances, magnetic behaviour, and redox couples in electrochemical analysis. Besides, two unique tetranuclear MRhRhM(dpa)4X2 (M: Cu+(13) and Ag+(14)) complexes with a Rh2(dpa)4 framework are developed. Four metals are aligned linearly. This coordination mode of metal strings provides a unique synthetic route for constructing longer metal chains from a smaller number of dentate ligands.
RESUMO
Nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) are complementary tools for studying the vibrational and geometric structures of specific isotopically labeled molecular systems. Here we apply NRVS and DFT to characterize the trans-[57Fe(η2-H2)(H)(dppe)2][BPh4] [dppe = 1,2-bis(diphenylphosphino)ethane] complex. Heretofore, most NRVS observations have centered on the spectral region below 1000 cm-1, where the 57Fe signal is strongest. In this work, we show that state-of-the-art synchrotron facilities can extend the observable region to 2000 cm-1 and likely beyond, in measurements that require less than 1 day. The 57Fe-H stretch was revealed at 1915 cm-1, along with the asymmetric 57Fe-H2 stretch at 1774 cm-1. For a small fraction of the H2-dissociated product, the 57Fe-H stretch was detected at 1956 cm-1. The unique sensitivity to 57Fe motion and the isolated nature of the Fe-H/H2 stretching modes enabled NRVS to quantitatively analyze the sample composition.
RESUMO
Five heterometallic pentanuclear metal strings were prepared by stepwise synthesis from two to three and four kinds of metals aligned in one chain. In particular, NiPtCo2Pd(tpda)4Cl2 (5) possesses four different metals, and the SQUID measurement shows that Ni2+ is the only magnetically active center. Besides, the shortest Co(ii)-Co(ii) single bond (2.105(9) Å), so far, is reported.
RESUMO
Light triggers the formation of HNO from a metal-nitrosyl species, facilitated by an intramolecular pendant thiol proton. Two {FeNO}6 complexes (the Enemark-Felthan notation), [Fe(NO)(TMSPS2)(TMSPS2H)] (1, TMSPS2H2 = 2,2'-dimercapto-3,3'-bis(trimethylsilyl)diphenyl)phenylphosphine; H is a dissociable proton) with a pendant thiol and [Fe(NO)(TMSPS2)(TMSPS2CH3)] (2) bearing a pendant thioether, are spectroscopically and structurally characterized. Both complexes are highly sensitive to visible light. Upon photolysis, complex 2 undergoes NO dissociation to yield a mononuclear Fe(III) complex, [Fe(TMSPS2)(TMSPS2CH3)] (3). In contrast, the pendant SH of 1 can act as a trap for the departing NO radical upon irradiation, resulting in the formation of an intermediate A with an intramolecular [SH···ON-Fe] interaction. As suggested by computational results (density functional theory), the NO stretching frequency (νNO) is sensitive to the intramolecular interaction between the pendant ligand and the iron-bound NO, and a shift of νNO from 1833 (1) to 1823 cm-1 (A) is observed experimentally. Subsequent photolysis of the intermediate A results in HNO production and a thiyl group that then coordinates to the Fe center for the formation of [Fe(TMSPS2)2] (4). In contrast with the common acid-base coupling pathway, the HNO is not voluntarily yielded from 1 but rather is generated by the photopromoted pathway. The photogenerated HNO can further react with [MnIII(TMSPS3)(DABCO)] (TMSPS3H3 = (2,2'2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine; DABCO = 1,4-diazabicyclo[2.2.2]octane) in organic media to yield anionic [Mn(NO)(TMSPS3)]- (5-) with a {MnNO}6 electronic configuration, whereas [MnIII(TMSPS3)(DABCO)] reacts with NO gas for the formation of a {MnNO}5 species, [Mn(NO)(TMSPS3)] (6). Effective differentiation of the formation of HNO from complex 1 with the pendant SH versus NO from 2 with the pendant SMe is achieved by the employment of [MnIII(TMSPS3)(DABCO)].
RESUMO
A diiron complex containing a bridging hydride and a protonated terminal thiolate of the form [(µ,κ2-bdtH)(µ-PPh2)(µ-H)Fe2(CO)5]+ has been investigated through 57Fe nuclear resonance vibrational spectroscopy (NRVS) and interpreted using density functional theory (DFT) calculations. We report the Fe-µH-Fe wagging mode, and indications for Fe-µD stretching vibrations in the D-isotopologue, observed by 57Fe-NRVS. Our combined approach demonstrates an asymmetric sharing of the hydride between the two iron sites that yields two nondegenerate Fe-µH/D stretching vibrations. The studied complex provides an important model relevant to biological hydrogen catalysis intermediates. The complex mimics proposals for the binuclear metal sites in [FeFe] and [NiFe] hydrogenases. It is also an appealing prototype for the 'Janus intermediate' of nitrogenase, which has been proposed to contain two bridging Fe-H-Fe hydrides and two protonated sulfurs at the FeMo-cofactor. The significance of observing indirect effects of the bridging hydride, as well as obstacles in its direct observation, is discussed in the context of biological hydrogen intermediates.
RESUMO
The synthesis, via a co-reduction method, of the first Pd-containing silver-rich 21-metal-atom nanocluster passivated by dithiolates, [PdAg20{S2P(OnPr)2}12] (1), is reported. 1 is an 8 electron superatom isoelectronic to [Ag21{S2P(OiPr)2}12]+. The doping of Pd in 1 leads to its high stability against degradation in solution and shows red emission in MeTHF at 77 K. In addition, we report the X-ray crystal structure of a multi-palladium doped silver nanocluster, [Pd6Ag14(S){S2P(OnPr)2}12] (2), for the first time. Its X-ray structure exhibits a sulfide-centered Pd6Ag2 rhombohedron surrounded by twelve additional silver atoms with S6 symmetry. The XPS study and DFT calculations indicate that 2 contains Pd(0) and Ag(i) metals. A significant decrease in the electrochemical gap was observed in the SWVs of 2.
RESUMO
Diindeno-fused dibenzo[a,h]anthracene 6 and diindeno-fused dibenzo[c,l]chrysene 9 contain the key moieties 1,4-quinodipropene (1,4-QDP) and 2,6-naphthoquinodipropene (2,6-NQDP), respectively, and they both have an open-shell singlet ground state. The latter compound exhibits a strong biradical character and interesting properties, including a low ΔET-S (2.44â kcal mol-1 ), a small HOMO-LUMO gap (1.06â eV), a wide photoabsorption range (250-1172â nm), and a large two-photon absorption cross-section (σ=1342±56 GM). This work verifies that 6 has a slightly larger HOMO-LUMO gap and ΔET-S than its helical isomer diindeno[2,1-f:1',2'-j]picene (DIP), but is a much stronger two-photon absorber, verifying the important effect of geometry on the photophysical properties.
RESUMO
The structurally precise Cu-rich hydride nanoclusters [PdCu14 H2 (dtc/dtp)6 (C≡CPh)6 ] (dtc: di-butyldithiocarbamate (1); dtp: di-isopropyl dithiophosphate (2)) were synthesized from the reaction of polyhydrido copper clusters [Cu28 H15 (S2 CNn Bu2 )12 ]+ or [Cu20 H11 {S2 P(Oi Pr)2 }9 ] with phenyl acetylene in the presence of Pd(PPh3 )2 Cl2 . Their structures and compositions were determined by single-crystal X-ray diffraction and the results supported by ESI-mass spectrometry. Hydride positions in 1 were confirmed by single-crystal neutron diffraction. Each hydride is connected to one Pd0 and four CuI atoms in slightly distorted trigonalbipyramidal geometry. The anatomies of clusters 1 and 2 are very similar and DFT calculations allow rationalizing the interactions between the encapsulated [PdH2 ]2- unit and its Cu14 bicapped icosahedral cage. As a result, Pd has the highest coordination number (14) so far recorded.
RESUMO
Dioxygen activation by FeII thiolate complexes is relatively rare in biological and chemical systems because the sulfur site is at least as vulnerable as the iron site to oxidative modification. O2 activation by FeII-SR complexes with thiolate bound trans to the O2 binding site generally affords the FeIV[double bond, length as m-dash]O intermediate and oxidized thiolate. On the other hand, O2 activation by Fe(ii)-SR complexes with thiolate bound cis to the O2 binding site generates FeIII-O-FeIII or S-oxygenated complexes. The postulated FeIV[double bond, length as m-dash]O intermediate has only been identified in isopenicillin N synthase recently. We demonstrated here that O2 activation by a dinuclear FeII thiolate-rich complex produces a mononuclear FeIII complex and water with a supply of electron donors. The thiolate is bound cis to the postulated dioxygen binding site, and no FeIII-O-FeIII or S-oxygenated complex was observed. Although we have not detected the transient intermediate by spectroscopic measurements, the FeIV[double bond, length as m-dash]O intermediate is suggested to exist by theoretical calculation, and P-oxidation and hydride-transfer experiments. In addition, an unprecedented FeIII-O2-FeIII complex supported by thiolates was observed during the reaction by using a coldspray ionization time-of-flight mass (CSI-TOF MS) instrument. This is also supported by low-temperature UV-vis measurements. The intramolecular NHO[double bond, length as m-dash]FeIV hydrogen bonding, calculated by DFT, probably fine tunes the O2-activation process for intramolecular hydrogen abstraction, avoiding the S-oxygenation at cis-thiolate.
RESUMO
We have synthesized and structurally characterized a series of centred cuboctahedral copper clusters, namely [Cu13{S2CNR2}6{C[triple bond, length as m-dash]CR'}4](PF6), 1a-d (where a: R = n Bu, R' = CO2Me; b: R = n Bu, R' = CO2Et; c: R = iPr, R' = CO2Et; d: R = n Pr, R' = 3,5-(CF3)2C6H3); [Cu12(µ12-S){S2CNR2}6{C[triple bond, length as m-dash]CR'}4], 2a-c; [Cu12(µ12-Cl){S2CNR2}6{C[triple bond, length as m-dash]CR'}4](PF6), 3a-e (where e: R = n Bu, R' = Ph); [Cu12(µ12-Br){S2CN n Bu2}6{C[triple bond, length as m-dash]CPh}4](PF6), 4e; and [Cu12(µ12-Cl)(µ3-Cl){S2CN n Bu2}6{C[triple bond, length as m-dash]CCO2Me}3]+ 5a. Cluster 1a is the first structurally characterized copper cluster having a Cu13 centered cuboctahedral arrangement, a miniature of the bulk copper fcc structure. Furthermore, the partial Cu(0) character in the 2-electron superatoms 1 was confirmed by XANES. Inverse coordination clusters 2-5 are the first examples of copper clusters containing main group elements (Cl, Br, S) with a hyper-coordination number, twelve. A combined theoretical and experimental study was performed, which shows that the central copper (formally Cu1-) in nanoclusters 1 can be replaced by chalcogen/halogen atoms, resulting in the formation of clusters 2-5 which show enhanced luminescence properties and increase in the ionic component of the host-guest interaction as Br ≈ Cl > S > Cu, which is consistent with the Cu-X Wiberg indices. The new compounds have been characterized by ESI-MS, 1H, 13C NMR, IR, UV-visible, emission spectroscopy, and the structures 2a-b, 3d-e, 4e and 5a were established by X-ray diffraction analysis.
RESUMO
A templated galvanic exchange performed on [Ag20 {Se2 P(OiPr)2 }12 ] of C3 symmetry with three equiv AuI yields a mixture of [Au1+x Ag20-x {Se2 P(OiPr)2 }12 ]+ (x=0-2) from which [Au@Ag20 {Se2 P(OiPr)2 }12 ]+ and [Au@Au2 Ag18 {Se2 P(OiPr)2 }12 ]+ are successfully characterized to have T and C1 symmetry, respectively. Crystal structural analyses combined with DFT calculations on the model compounds explicitly demonstrate that the central Ag0 of Ag20 being oxidized by AuI migrates to the protecting atomic shell as a new capping AgI , and both second and third Au dopants prefer occupying non-adjacent icosahedron vertices. The differences in symmetry, T and C1 , are manifested in the spatial orientation of their protecting atomic shell composed of eight capping Ag atoms as well as re-construction upon the replacement of Ag atoms on the vertices of AuAg12 icosahedral core with second and third Au dopants. As a result, a unique pathway for substitutional-doped clusters with increased nuclearity is proposed.
RESUMO
The intrinsic catalytic property of a Fe-S complex toward H2 evolution was investigated in a wide range of acids. The title complex exhibited catalytic events at -1.16 and -1.57 V (vs Fc+/Fc) in the presence of trifluoromethanesulfonic acid (HOTf) and trifluoroacetic acid (TFA), respectively. The processes corresponded to the single reduction of the Fe-hydride-S-proton and Fe-hydride species, respectively. When anilinium acid was used, the catalysis occurred at -1.16 V, identical with the working potential of the HOTf catalysis, although the employment of anilinium acid was only capable of achieving the Fe-hydride state on the basis of the spectral and calculated results. The thermodynamics and kinetics of individual steps of the catalysis were analyzed by density functional theory (DFT) calculations and electroanalytical simulations. The stepwise CCE or CE (C, chemical; E, electrochemical) mechanism was operative from the HOTf or TFA source, respectively. In contrast, the involvement of anilinium acid most likely initiated a proton-coupled electron transfer (PCET) pathway that avoided the disfavored intermediate after the initial protonation. Via the PCET pathway, the heterogeneous electron transfer rate was increased and the overpotential was decreased by 0.4 V in comparison with the stepwise pathways. The results showed that the PCET-involved catalysis exhibited substantial kinetic and thermodynamic advantages in comparison to the stepwise pathway; thus, an efficient catalytic system for proton reduction was established.
RESUMO
The heterotrimetallic complexes [FeMFe(dpa)4 Cl2 ] (M=Ni (1), Pd (2), and Pt (3); dpa- =dipyridylamido) featuring two high-spin iron centers linked by Groupâ 10 metals were synthesized and their physical properties were investigated. Oxidation of 1-3 with suitable oxidants in CH2 Cl2 solution yielded the mixed-valent species [1]+/2+ -[3]+/2+ . The solution properties of [1]0/+/2+ -[3]0/+/2+ were characterized by 1 Hâ NMR and UV/Vis/NIR spectroscopy as well as spectroelectrochemisty. The mixed-valent states of [1]+ -[3]+ obtained by electrochemical or chemical oxidation are classified as classâ II valence delocalization. The solid-state structures of 1-3, [1]+ , [3]+ , and [1]2+ were determined by single-crystal X-ray diffraction analysis, exhibiting a linear metal framework with an approximate D4 symmetry. The spin states and magnetic properties were studied by using SQUID magnetometry, EPR and Mössbauer spectroscopy, and DFT calculations. Antiferromagnetic interactions between terminal high-spin iron centers are present within [1]0/+/2+ -[3]0/+/2+ and the |J| values increase with the central metal ion changing from Ni to Pt. The DFT calculations reproduce the antiferromagnetic coupling and ascribe it to a σ-type exchange pathway. The substitution of the central metal not only influences the spin-spin interactions but also the degree of electronic delocalization between the terminal iron sites along the Fe-M-Fe chains.
RESUMO
Controlling the metal nanoclusters with atomic precision is highly difficult and further studies on their transformation reactions are even more challenging. Herein we report the controlled formation of a silver alloy nanocluster [AuAg19{S2P(OnPr)2}12] (1) from an Ag20 template via a galvanic exchange route. X-ray structural analysis reveals that the alloy structure comprises of a gold-centered Ag12 icosahedron, Au@Ag12, capped by seven silver atoms. Interestingly upon reacting with one equiv. of silver(i) salt, (1) can transform into a higher nuclearity nanocluster, [Au@Ag20{S2P(OnPr)2}12]+ (2). The conversion process is studied via ESI mass spectrometry and 31P NMR spectroscopy. This kind of size-structural transformation at the single atom level is quite remarkable. Furthermore, the compositions of all the doped nanoclusters (1, 2) were fully characterized with ESI-MS and EDS. The blue shift depicted in the UV-visible and emission spectra of the doped nanoclusters (1, 2) compared with the precursor, Ag20, demonstrates that the doping atoms have significant effects on the electronic structures.