Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Cell Infect Microbiol ; 11: 641920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816347

RESUMO

Pseudomonas aeruginosa is a biofilm-forming opportunistic pathogen which causes chronic infections in immunocompromised patients and leads to high mortality rate. It is identified as a common coinfecting pathogen in COVID-19 patients causing exacerbation of illness. In our hospital, P. aeruginosa is one of the top coinfecting bacteria identified among COVID-19 patients. We collected a strong biofilm-forming P. aeruginosa strain displaying small colony variant morphology from a severe COVID-19 patient. Genomic and transcriptomic sequencing analyses were performed with phenotypic validation to investigate its adaptation in SARS-CoV-2 infected environment. Genomic characterization predicted specific genomic islands highly associated with virulence, transcriptional regulation, and DNA restriction-modification systems. Epigenetic analysis revealed a specific N6-methyl adenine (m6A) methylating pattern including methylation of alginate, flagellar and quorum sensing associated genes. Differential gene expression analysis indicated that this isolate formed excessive biofilm by reducing flagellar formation (7.4 to 1,624.1 folds) and overproducing extracellular matrix components including CdrA (4.4 folds), alginate (5.2 to 29.1 folds) and Pel (4.8-5.5 folds). In summary, we demonstrated that P. aeuginosa clinical isolates with novel epigenetic markers could form excessive biofilm, which might enhance its antibiotic resistance and in vivo colonization in COVID-19 patients.

2.
BMC Vet Res ; 17(1): 153, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836763

RESUMO

BACKGROUND: T-2 toxin is a mycotoxin produced by Fusarium species that is highly toxic to animals. Recent studies have indicated that Selenomethionine (SeMet) have protective effect against mycotoxins-induced toxicity. The aim of the present study was to investigate the protective effect of SeMet on T-2-toxin-induced liver injury in rabbit and explore its molecular mechanism. Fifty rabbits (30 d, 0.5 ± 0.1 kg) were randomly divided into 5 groups: control group, T-2 toxin group, low, medium and high dose SeMet treatment group. The SeMet-treated group was orally pretreated with SeMet (containing selenium 0.2 mg/kg, 0.4 mg/kg and 0.6 mg/kg) for 21 days. On the 17th day, T-2 toxin group and SeMet-treated group were orally administered with T-2 toxin (0.4 mg/kg body weight) for 5 consecutive days. RESULTS: The results showed that low-dose SeMet significantly improved T-2 toxin-induced liver injury. We found that low-dose SeMet can reduce the level of oxidative stress and the number of hepatocyte apoptosis. Moreover, the levels of Bax, caspase-3 and caspase-9 were significantly reduced and the levels of Bcl-2 were increased. CONCLUSIONS: Therefore, we confirmed that low-dose SeMet may protect rabbit hepatocytes from T-2 toxin by inhibiting the mitochondrial-caspase apoptosis pathway.

3.
J Appl Biomater Funct Mater ; 19: 22808000211005384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784188

RESUMO

OBJECTIVE: Dentin hypersensitivity (DH) is a common oral disease with approximately 41.9% prevalence. Reconstruction of dental hard tissues is the preferred treatment for relieving DH. Here, we applied biomineralization method using oligopeptide simulating cementum protein 1 (CEMP1) to regenerate hard tissues on demineralized dentin. METHODS: The self-assembly and biomineralization property of the oligopeptide were detected by scanning electron microscopy (SEM), circular dichroism spectroscopy, and transmission electron microscopy. Oligopeptide's binding capacity to demineralized dentin was evaluated by SEM and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Remineralization was characterized using SEM, ATR-FTIR, X-ray diffraction, and nanoindentation. Oligopeptide's biocompatibility was evaluated using periodontal ligament cells. RESULTS: Oligopeptides self-assembled into nano-matrix and templated mineral precursor formation within 24 h. Moreover, oligopeptide nano-matrix bound firmly on demineralized dentin and resisted water rinsing. Then, bound nano-matrix served as a template to initiate nucleation and transformation of hydroxyapatite on demineralized dentin. After 96 h, oligopeptide nano-matrix regenerated an enamel-like tissue layer with a thickness of 15.35 µm, and regenerated crystals occluded dentin tubules with a depth of 31.27 µm. Furthermore, the oligopeptide nano-matrix had good biocompatibility when co-cultured with periodontal ligament cells. CONCLUSIONS: This biomimetic oligopeptide simulating CEMP1 effectively induced remineralization and reconstructed hard tissues on demineralized dentin, providing a potential biomaterial for DH treatment.

4.
Int J Hematol ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646527

RESUMO

It is unknown whether adding stanozolol to decitabine for maintenance can further improve progression-free survival (PFS) and overall survival (OS) after effective decitabine treatment in patients with high-risk myelodysplastic syndrome (MDS). Patients newly diagnosed with high-risk MDS who achieved at least partial remission after 4 cycles of decitabine (20 mg/m2 days 1-5) were selected. In total, 62 patients (median age 66 years) were enrolled, of whom 21 were treated with stanozolol and decitabine for maintenance, and 41 were treated with decitabine alone. The median number of cycles for maintenance treatment was 6 (2-11) and 5 (2-12) for the stanozolol and control groups, respectively (p > 0.05). PFS in the stanozolol group was significantly longer than in the control group (15.0 vs 9.0 months, hazard ratio [HR] = 0.35, 95%CI: 0.19-0.63, p = 0.0005), whereas OS was not significantly prolonged in the stanozolol group (21.0 vs 15.0 months, HR = 0.73, 95%CI: 0.39-1.37, p = 0.33). The proportion of patients with severe neutropenia during maintenance treatment in the stanozolol group was lower than in the control group (76.2% vs 95.1%, p = 0.039). In conclusion, adding stanozolol to decitabine after effective decitabine treatment can prolong PFS and reduce the severity of neutropenia for patients with high-risk MDS.

5.
Biol Trace Elem Res ; 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682074

RESUMO

T-2 toxin is a trichothecene mycotoxin produced by fusarium species, which is mainly prevalent in grain and livestock feed. One of the main effects of this toxin is immunodepression. Previous studies have shown that T-2 toxin can cause damage to immune organs and impaired immune function in animals. However, selenomethionine (SeMet) as an organic selenium source can not only promote the growth and development of the body but also effectively improve the body's immune function. In this study, rabbits were exposed to 0.4-mg/kg T-2 toxin, and abnormal blood routine indicators were found in the rabbits. HE staining also showed obvious lesions in the spleen and thymus tissue structures, accompanied by a large number of bleeding points. In addition, rabbits showed strong oxidative stress and inflammatory response after T-2 toxin action. 0.2 mg/kg, 0.4 mg/kg, and 0.6 mg/kg organic selenium were added to the feed. However, it was found that 0.2 mg/kg selenium can effectively improve the abnormal changes of blood routine and spleen and thymus tissue of rabbits. On the other hand, it can significantly increase the expression of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the spleen and thymus, and downregulate the expression of reactive oxygen species (ROS) and malondialdehyde (MDA). In addition, inflammatory factors interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in blood were also significantly inhibited; the expression of proliferating cell nuclear antigen (PCNA) in the spleen and thymus was also significantly increased after low-dose selenium treatment. Surprisingly, 0.4 mg/kg and 0.6 mg/kg of selenium did not effectively alleviate the immunotoxic effects caused by T-2 toxin, and cause damage to a certain extent. In summary, our results show that 0.2 mg/kg of SeMet can effectively alleviate the immunotoxicity caused by T-2 toxin. Selenium may protect rabbits from T-2 toxin by improving its antioxidant and anti-inflammatory capabilities.

6.
Food Chem ; 334: 127519, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721832

RESUMO

We aimed to characterize and quantify glucosinolate compounds and contents in broccoli, and a total of 80 genotypes and eight developmental organs were analyzed with UHPLC-Triple-TOF-MS. The method was validated in terms of performance, and the coefficients of determination (R2) were 0.97 and 0.99 for glucoraphanin and gluconapin, respectively. In 80 genotypes, twelve glucosinolates were found in broccoli florets ranging from 0.467 to 57.156 µmol/g DW, with the highest glucosinolate content being approximately 122-fold higher than the lowest value. The principal component of glucobrassicin, neoglucobrassicin and glucoraphanin explained 60.53% of the total variance. There were positive correlations among hydroxyglucobrassicin, methoxyglucobrassicin, glucobrassicin, glucoerucin, gluconasturtiin, glucoraphanin, and glucotropaeolin (P < 0.05). The root contained 43% of total glucosinolates in 80 genotypes, and glucoraphanin represented 29% of the total glucosinolate content in different organs. The mutant broccoli genotypes were found by analysis of gluconapin contents in different organs.


Assuntos
Brassica/metabolismo , Glucosinolatos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Brassica/genética , Cromatografia Líquida de Alta Pressão , Genótipo , Glucosinolatos/análise , Imidoésteres/análise , Indóis/análise
7.
Carbohydr Polym ; 251: 116871, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142550

RESUMO

Stimulated by researches in materials chemistry and medicine fields, drug delivery has entered a new stage of development. Drug delivery systems have been extensively studied according to the differences in the drug therapeutic environment such as pH, light, temperature, magnet, redox, enzymes, etc. Cyclodextrin is a smart tool that has been proven to be used in the preparation of drug delivery, and has become a new area of concern in recent years. In this review, we discuss recent research advances in smart stimuli-responsive cyclodextrin-based drug delivery. First, different stimuli-responsive drug delivery systems based on cyclodextrin are introduced and classified. Then, the characteristics of different types of stimuli-responsive drug delivery systems are described, and their applications are emphasized. Finally, current challenges and future development opportunities of smart stimuli-responsive drug delivery systems based on cyclodextrin are discussed.


Assuntos
Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis , Ensaios Clínicos como Assunto , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/classificação , Sistemas de Liberação de Medicamentos/métodos , Enzimas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luz , Magnetismo , Teste de Materiais , Oxirredução , Processos Fotoquímicos , Temperatura
8.
Neurochem Res ; 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237471

RESUMO

Chemotherapy-induced cognitive impairment (CICI) is a common detrimental effect of cancer treatment, occurring in up to 75% of cancer patients. The widely utilized chemotherapeutic agent doxorubicin (DOX) has been implicated in cognitive decline, mostly via cytokine-induced neuroinflammatory and oxidative and mitochondrial damage to brain tissues. C-phycocyanin (CP) has previously been shown to have potent anti-inflammatory, antioxidant, and mitochondrial protective properties. Therefore, this present study was aimed to investigate the neuroprotective effects of CP against DOX-elicited cognitive impairment and explore the underlying mechanisms. CP treatment (50 mg/kg) significantly improved behavioral deficits in DOX-treated mice. Furthermore, CP suppressed DOX-induced neuroinflammation and oxidative stress, mitigated mitochondrial abnormalities, rescued dendritic spine loss, and increased synaptic density in the hippocampus of DOX-treated mice. Our results suggested that CP improves established DOX-induced cognitive deficits, which could be explained at least partly by inhibition of neuroinflammatory and oxidant stress and attenuation of mitochondrial and synaptic dysfunction.

9.
Immunol Lett ; 229: 18-26, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33238163

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) have the immuno-modulatory capacity to ameliorate autoimmune diseases, such as multiple schlerosis (MS), systemic lupus erythematosus and rheumatoid arthritis. However, BMSC-mediated immunosuppression can be challenging to achieve. The efficacy of BMSC transplantation may be augmented by an adjuvant therapy. Here, we demonstrated that treatment of mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, with BMSCs over-expressing microRNA (miR)-23b provided better synergistic and longer-term therapeutic effects than treatment with traditional BMSCs. Over-expression of miR-23b enhanced the ability of BMSCs to inhibit differentiation of Th17 cells and reduced IL-17 secretion. Compared to traditional BMSCs, the miR-23b over-expressing BMSCs (miR23b-BMSCs) exhibited enhanced secretion of tumor growth factor beta 1 (TGF-ß1), a cytokine that promotes the differentiation of regulatory T (Treg) cells. Pathologically, miR23b-BMSC transplantation delayed EAE progression, apparently by reducing the Th17/Treg cell ratio and inhibiting inflammatory cell infiltration across the blood-brain barrier, and thus slowing spinal cord demyelination. These results may lead to better utility of BMSCs as a treatment for autoimmune diseases.

10.
Research (Wash D C) ; 2020: 1469301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145492

RESUMO

The O3-type layered oxide cathodes for sodium-ion batteries (SIBs) are considered as one of the most promising systems to fully meet the requirement for future practical application. However, fatal issues in several respects such as poor air stability, irreversible complex multiphase evolution, inferior cycling lifespan, and poor industrial feasibility are restricting their commercialization development. Here, a stable Co-free O3-type NaNi0.4Cu0.05Mg0.05Mn0.4Ti0.1O2 cathode material with large-scale production could solve these problems for practical SIBs. Owing to the synergetic contribution of the multielement chemical substitution strategy, this novel cathode not only shows excellent air stability and thermal stability as well as a simple phase-transition process but also delivers outstanding battery performance in half-cell and full-cell systems. Meanwhile, various advanced characterization techniques are utilized to accurately decipher the crystalline formation process, atomic arrangement, structural evolution, and inherent effect mechanisms. Surprisingly, apart from restraining the unfavorable multiphase transformation and enhancing air stability, the accurate multielement chemical substitution engineering also shows a pinning effect to alleviate the lattice strains for the high structural reversibility and enlarges the interlayer spacing reasonably to enhance Na+ diffusion, resulting in excellent comprehensive performance. Overall, this study explores the fundamental scientific understandings of multielement chemical substitution strategy and opens up a new field for increasing the practicality to commercialization.

11.
Cardiopulm Phys Ther J ; 31(2): 38-46, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33100924

RESUMO

Purpose: The aim of this study was to evaluate the relationship of cardiovascular disease (CVD) on middle cerebral blood flow velocity (MCAv) at rest and during exercise. A secondary aim was to explore the relationship between MCAv and 1) the presence of white matter lesions and 2) cognitive function. Methods: We recruited individuals who were cognitively normal older adults. CVD risk was assessed by the Pooled Cohort atherosclerotic cardiovascular disease (ASCVD) risk score. Transcranial Doppler ultrasound measured middle cerebral artery at rest and during a bout of moderate intensity exercise. We quantified white matter lesions from MRI and cognitive function outcomes included executive function, language, processing speed, and attention. Results: Seventy-two participants 70.1 ± 4.7 years of age completed the study protocol. ASCVD risk score was significantly associated with resting and exercise MCAv (p<0.01) but not associated with white matter lesions (p>0.468). We observed a significant association between resting and exercise MCAv and language processing (p=0.010) but not other cognitive domains. Conclusion: In cognitively normal older adults, higher ASCVD risk score was associated with blunted resting and exercise MCAv and with lower language processing performance. These results highlight the need for CVD risk management to maintain optimal brain health.

12.
Pediatr Pulmonol ; 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33118673

RESUMO

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a serious lung disease observed in premature infants, known to cause considerable morbidity and mortality. Its prognosis is influenced by a complex network of genetic interactions. In this study, we determined the potential key factors in the pathogenesis of this condition. METHODS: We constructed scale-free gene coexpression network using weighted gene coexpression network analysis. The analysis was carried out on the GSE8586 dataset, which contains the expression profiles of umbilical cord tissue homogenates from 20 neonates with BPD and 34 unaffected controls. RESULTS: Our analysis identified one significantly downregulated coexpression module related to the BPD phenotype. It was significantly enriched in genes related to human T-cell leukemia virus infection and the mitogen-activated protein kinase pathway. In this module, the expression of the following four hub genes in infants with BPD was significantly decreased: Fos proto-oncogene (FOS), BTG antiproliferation factor 2 (BTG2), Jun proto-oncogene (JUN), and early growth response protein 1 (EGR1). The downregulation of these hub genes was verified in clinical samples derived from blood and umbilical cord tissue. CONCLUSION: The decreased expression of FOS, BTG2, JUN, and EGR1 is associated with BPD and, therefore, could be used as biomarkers to diagnose early BPD.

13.
J Cancer ; 11(23): 7023-7031, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123292

RESUMO

Objective: To investigate the association between serum lipid levels in patients with primary non-small cell lung cancer and the risk of developing metastases, a retrospective cohort-based nested case-control study was conducted. Material and method: Patients with primary non-small cell lung cancer admitted to the First and the Third Hospitals of Jilin University from January 2008 through December 2015 were recruited retrospectively based on their electronic medical records. A total of 524 patients were initially considered, consisting of 138 in the case group and 386 as control. Out of these, 110 were finally included in the case group and 110 as control based on additional selection criteria. The following information is collected from all the patients, total cholesterol (TC), low-density lipoprotein (LDL-C), high density lipoprotein (HDL-C) and triglyceride (TG). Logistic regressions were conducted to estimate the odds ratios (ORs) and 95% confidence intervals (95% CI) for non-small cell lung cancer (NSCLC) patients to have metastasis risk when having elevated serum lipid levels. Restricted cubic spline (RCS) curves were used to demonstrate the association between serum lipid levels and the risk of metastasis. Results: Patients with high TC level (P = 0.025, 0R = 1.35, 95% CI: 1.03-1.74) and patients with high LDL-C level (Q4: > 3.47 vs Q1: ≤2.54, P = 0.002, OR = 3.92, 95% CI: 1.31-11.77) are found to have an increased metastasis risk; and their dose-response relationship was validated by our restricted cubic spline analysis (TC: P overall association=0.02, P non-linear association = 0.73; LDL-C: P overall association=0.02, P non-linear association = 0.10). These associations were statistically significant, particularly in men who smoked, never drank, and were 65 years of age or younger. In addition, patients with simultaneously high levels of TC and LDL-C have a 60% increased risk of metastasis compared with patients with high levels of TC and normal LDL-C. Conclusion: Dyslipidemia may be a risk factor for metastasis among NSCLC patients. Examination of serum lipid level on a regular basis can provide early signal of metastasis for NSCLC patients.

14.
Res Vet Sci ; 132: 439-447, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32777540

RESUMO

T-2 toxin is the most toxic as a type A trichothecenes, which could contaminate grains, especially in wheat and corn. It can cause immune suppression, neurotoxicity, the apoptosis of cells and even induce tumorigenesis. Recent studies have indicated that selenium (Se) have protective effect against mycotoxins-induced toxicity. The present studies was designed to investigate the protective role of Selenomethionine (SeMet) on T-2 toxin-induced toxicity in rabbit's jejunum. 50 New Zealand rabbits were divided into five group (Control group, T-2 group, low-dose Se + T-2 group, medium-dose + T-2 group and high-dose Se + T-2 group). New Zealand rabbits were orally administered with SeMet (0.2, 0.4 and 0.6 mg/kg, Adding diet) for 21 days. On 17th days, each group began to take 0.4 mg/kg of T-2 toxin orally every day for 5 days. We found that rabbit exposed to T-2 toxin could increase the levels of ROS, and decrease activities of antioxidant enzymes and the expression of Occludin and ZO-1. In addition, T-2 toxin could trigger jejunal inflammatory response and enhance the expression of IL-1ß, IL-6 and TNF-α. After SeMet pretreatment, our results indicated that Se attenuated the T-2 toxin-induced oxidative stress, decreasing the level of ROS, MDA and enhancing the activity of SOD and GSH-Px. Moreover, SeMet can alleviate jejunal inflammatory response, and protect the integrity of the intestinal barrier through up-regulating the expression of ZO-1 and Occludin. In the present research, supplementation of 0.2 mg/kg SeMet in the diet could effectively alleviate the T-2 toxin poisoning in rabbits.

15.
Exp Ther Med ; 20(3): 2879-2887, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32765785

RESUMO

The purpose of the current study was to determine the effect of perioperative amplitude-integrated electroencephalography (aEEG) on neurodevelopmental outcomes in infants with congenital heart disease (CHD). A total of 93 children with CHD were included in the current study. All patients enrolled in the present study had undergone cardiac surgery prior to 3 months of age and pre- or postoperative aEEG was monitored. Participants were assessed after 1 year using the Bayley Scales of Infant Test. A total of 82.2% of infants exhibited continuous normal voltage preoperatively (CNV) and 93.7% exhibited CNV postoperatively. Seizures were indicated in 2 infants preoperatively and 3 infants postoperatively. Compared with infants with PDI, infants with cyanotic CHD (ß=17.218) exhibited a significantly lower MDI, an increased length of intensive care stay, and lower PDI scores (ß=-0.577). Infants that underwent surgery with CPB exhibited higher PDI scores (ß=11.956). Infants that exhibited behavioral problems also had lower PDI scores (ß=-10.605). An abnormal preoperative background pattern and an absent postoperative SWC independently predicted poorer motor (P=0.014) and cognitive (P=0.049) outcomes at 1 year. The current study demonstrated that infants with CHD who underwent cardiac surgery prior to 3 months of age exhibited delayed neurodevelopmental outcomes, and that an aEEG assessment can aid in predicting these outcomes following surgery.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32754119

RESUMO

Background: Diabetes correlates with poor prognosis in patients with COVID-19, but very few studies have evaluated whether impaired fasting glucose (IFG) is also a risk factor for the poor outcomes of patients with COVID-19. Here we aimed to examine the associations between IFG and diabetes at admission with risks of complications and mortality among patients with COVID-19. Methods: In this multicenter retrospective cohort study, we enrolled 312 hospitalized patients with COVID-19 from 5 hospitals in Wuhan from Jan 1 to Mar 17, 2020. Clinical information, laboratory findings, complications, treatment regimens, and mortality status were collected. The associations between hyperglycemia and diabetes status at admission with primary composite end-point events (including mechanical ventilation, admission to intensive care unit, or death) were analyzed by Cox proportional hazards regression models. Results: The median age of the patients was 57 years (interquartile range 38-66), and 172 (55%) were women. At the time of hospital admission, 84 (27%) had diabetes (and 36 were new-diagnosed), 62 (20%) had IFG, and 166 (53%) had normal fasting glucose (NFG) levels. Compared to patients with NFG, patients with IFG and diabetes developed more primary composite end-point events (9 [5%], 11 [18%], 26 [31%]), including receiving mechanical ventilation (5 [3%], 6 [10%], 21 [25%]), and death (4 [2%], 9 [15%], 20 [24%]). Multivariable Cox regression analyses showed diabetes was associated increased risks of primary composite end-point events (hazard ratio 3.53; 95% confidence interval 1.48-8.40) and mortality (6.25; 1.91-20.45), and IFG was associated with an increased risk of mortality (4.11; 1.15-14.74), after adjusting for age, sex, hospitals and comorbidities. Conclusion: IFG and diabetes at admission were associated with higher risks of adverse outcomes among patients with COVID-19.


Assuntos
Glicemia/metabolismo , Infecções por Coronavirus/mortalidade , Complicações do Diabetes/mortalidade , Diabetes Mellitus/fisiopatologia , Intolerância à Glucose/complicações , Hiperglicemia/complicações , Pneumonia Viral/mortalidade , Adulto , Idoso , Betacoronavirus/isolamento & purificação , China/epidemiologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/virologia , Diabetes Mellitus/virologia , Jejum , Feminino , Seguimentos , Intolerância à Glucose/virologia , Mortalidade Hospitalar , Hospitalização , Humanos , Hiperglicemia/virologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Taxa de Sobrevida
17.
Sleep Med ; 73: 125-129, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32827884

RESUMO

OBJECTIVE: Impaired cerebrovascular reactivity (CVR) in patients with obstructive sleep apnea syndrome (OSAS) increases the risk of ischemic stroke. CVR also decreases with age in normal individuals. However, it is unclear whether OSAS affects CVR differently in young and old patients. The aim of this study was to compare CVR in old and young patients with OSAS via transcranial Doppler (TCD) measurements of changes in cerebral blood flow velocity in the middle cerebral artery (MCAmv) during breath holding and hyperventilation. METHODS: A total of 20 old patients (≥65 y) and 40 young patients (<65 y) with similar distributions of sex and OSAS severity were recruited for this study. The breath-holding index (BHI) and the hyperventilation index (HVI) were calculated to measure CVR. RESULTS: No differences were found in MCAmv at baseline, apnea or hyperventilation between the two groups with different OSAS severities. However, reduced BHI (P < 0.01) and HVI (P < 0.01) were found in the young group with increasing severity of OSAS. Notably, the decline in BHI and HVI associated with OSAS severity was steeper in young patients than in old patients (P < 0.01). CONCLUSIONS: These findings suggest that CVR in young patients is more impacted by OSAS severity than that in old patients, suggesting the existence of age-related cerebrovascular susceptibility to OSAS.

18.
Biol Trace Elem Res ; 2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32656676

RESUMO

T-2 toxin is a member of a class of mycotoxins produced by a variety of Fusarium species under appropriate temperature and humidity conditions and is a common contaminant in food and feedstuffs of cereal origin. Selenium is an indispensable element in animals, regulates a variety of biological functions of the body, and can antagonize metal and mycotoxin poisoning to a certain extent. However, the effect of selenium on kidney injury induced by T-2 toxin has not been reported. In this study, 50 New Zealand rabbits were divided into 5 groups (the control group, T-2 toxin group, low-dose Se + T-2 toxin group, medium-dose Se + T-2 toxin group, and high-dose Se + T-2 toxin group). Rabbits were examined after oral administration of different doses of selenomethionine (SeMet) for 21 days and after perfusion with 0.4 mg/kg T-2 toxin (or the same dose of olive oil in the control group) for 5 days. We found that T-2 toxin induced kidney function damage and increased the levels of ROS and the contents of inflammatory factors. Renal structure was pathologically damaged. However, we found that after pretreatment with 0.2 mg/kg SeMet, oxidative stress, the inflammatory response, and pathological damage induced by T-2 toxin were attenuated. The results indicate that a low dose (0.2 mg/kg) of SeMet effectively reversed T-2 toxin-induced kidney injury in rabbits.

19.
Cancer Manag Res ; 12: 5041-5048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612391

RESUMO

Background: Primary gastric diffuse large B-cell lymphoma (PG-DLBCL) is a common subtype of extranodal non-Hodgkin lymphoma (NHL), with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) as the commonly used treatment regimen. However, full cycles of standard R-CHOP present the risk of severe bleeding or perforation, even leading to emergency surgery, especially for those with deep lesions in their first 1-2 cycles of treatment. This study aims to explore the safety and efficacy of fractioned R-CHOP (rituximab d0, 50% dose of CHOP d1 and d5) followed by standard R-CHOP cycles in PG-DLBCL patients guided by endoscopic ultrasonography (EUS). Patients and Methods: Thirty-one PG-DLBCL patients were analyzed in this retrospective study. All patients had lesions infiltrated to at least the 3rd layer of the stomach under EUS at baseline. Patients switched to standard R-CHOP if they showed the reduced infiltrated layers and restricted lesions after fractioned R-CHOP cycles. Results: The overall response rate, 5-year progression-free survival (PFS) and overall survival (OS) of patients in our study were 93.5%, 75% and 84%, respectively. No treatment delay or dosage reduction from gastric adverse event was observed. None of the patients in our study suffered from severe bleeding or perforation during the treatment. Kaplan-Meier analyses showed that PG-DLBCL patients characterized by multiple localization, lesions ≥3cm, having B symptoms, lower serum albumin level, and elevated LDH level were associated with worse PFS and OS. Conclusion: Our data indicate that it might be an effective approach in treating deeply infiltrated PG-DLBCL patients by switching fractioned R-CHOP to standard R-CHOP cycles guided by EUS.

20.
Theor Appl Genet ; 133(10): 2825-2837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613264

RESUMO

KEY MESSAGE: Ogura CMS fertility-restored materials, with 18 chromosomes, normal seed setting, stable fertility and closer genetic background to the parent Chinese kale, were successfully developed in B. oleracea via a triploid strategy for the first time. Ogura cytoplasmic male sterility (CMS) is the most widely used sterile type in seed production for commercial hybrids of Brassica oleracea vegetables. However, the natural Ogura CMS restorer line has not been found in B. oleracea crops. In this study, the triploid strategy was used with the aim to create euploid B. oleracea progenies with the Rfo gene. The allotriploid AAC hybrid YL2 was used as a male parent to backcross with Ogura CMS Chinese kale. After successive backcrosses, the BC2 Rfo-positive individual 16CMSF2-11 and its BC3 progenies, with 18 chromosomes, were developed, which were morphologically identical to the parent Chinese kale. Compared with F1 and BC1 plants, it showed stable fertility performance, and regular meiosis behavior and could produce seeds normally under natural pollination. The genomic composition analysis of Rfo-positive progenies by using molecular markers showed that more than 87% of the C-genome components of BC3 Rfo-progenies recovered to the parent Chinese kale, while most or all of the An-genome segments were lost in 16CMSF2-11 and its progenies. The results suggested that the genetic background of Rfo-positive individuals was closer to that of the parent Chinese kale along with backcrossing. Hereof, the Ogura CMS fertility-restored materials of Chinese kale were successfully created via triploid strategy for the first time, providing a bridge for utilizing the Ogura CMS B. oleracea germplasm in the future. Moreover, our study indicates that the triploid strategy is effective for transferring genes from B. napus into B. oleracea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...