Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32635719

RESUMO

We combined Raman scattering and magnetic susceptibility to explore the properties of [(CH3)2NH2]Mn(HCOO)3 under compression. Analysis of the formate bending mode reveals a broad two-phase region surrounding the 4.2 GPa critical pressure that becomes increasingly sluggish below the order-disorder transition due to the extensive hydrogen-bonding network. Although the paraelectric and ferroelectric phases have different space groups at ambient-pressure conditions, they both drive toward P1 symmetry under compression. This is a direct consequence of how the order-disorder transition changes under pressure. We bring these findings together with prior magnetization work to create a pressure-temperature-magnetic field phase diagram, unveiling entanglement, competition, and a progression of symmetry-breaking effects that underlie functionality in this molecule-based multiferroic. That the high-pressure P1 phase is a subgroup of the ferroelectric Cc suggests the possibility of enhanced electric polarization as well as opportunity for strain control.

2.
Nano Lett ; 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32578991

RESUMO

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to ∼1.0 GPa. Theoretical calculations indicate that a (-2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32312811

RESUMO

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in [Formula: see text]O-rich setting at high pressures and temperatures ([Formula: see text]) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between [Formula: see text] and [Formula: see text]O as archetypal materials for rock and ice, respectively, at high [Formula: see text] We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the [Formula: see text]-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of ([Formula: see text])[Formula: see text] At pressures above 60 GPa, [Formula: see text]O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.

4.
J Vet Pharmacol Ther ; 43(4): 347-354, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32133660

RESUMO

The objectives of this study were to compare the plasma and lung tissue pharmacokinetics of tilmicosin in healthy and Mycoplasma gallisepticum-infected chickens. Tilmicosin was orally administered at 4, 7.5 and 10 mg/kg body weight (b.w) for the infected and 7.5 mg/kg b.w for the uninfected control group. We found no significant differences in plasma tilmicosin pharmacokinetics between diseased and healthy control chickens. In contrast, the lung tissues in M. gallisepticum-infected chickens displayed a t1/2 (elimination half-life) 1.76 times longer than for healthy chickens. The Cmax (the maximum concentration of drug in samples) of tilmicosin in M. gallisepticum-infected chickens was lower than for controls at 7.5 mg/kg b.w (p < .05), and the AUCinf (the area under the concentration-time curve from time 0 extrapolated to infinity) in infected chickens was higher than for the healthy chickens (p < .05). The mean residence time of tilmicosin in infected chickens was also higher than the healthy chickens. These results indicated that the lungs of healthy chickens had greater absorption of tilmicosin than the infected chickens, and the rate of elimination of tilmicosin from infected lungs was slower.

5.
Inorg Chem ; 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32009403

RESUMO

We measured the infrared vibrational properties of two copper-containing coordination polymers, [Cu(pyz)2(2-HOpy)2](PF6)2 and [Cu(pyz)1.5(4-HOpy)2](ClO4)2, under different external stimuli in order to explore the microscopic aspects of spin-lattice coupling. While the temperature and pressure control hydrogen bonding, an applied field drives these materials from the antiferromagnetic → fully saturated state. Analysis of the pyrazine (pyz)-related vibrational modes across the magnetic quantum-phase transition provides a superb local probe of magnetoelastic coupling because the pyz ligand functions as the primary exchange pathway and is present in both systems. Strikingly, the PF6- compound employs several pyz-related distortions in support of the magnetically driven transition, whereas the ClO4- system requires only a single out-of-plane pyz bending mode. Bringing these findings together with magnetoinfrared spectra from other copper complexes reveals spin-lattice coupling across the magnetic quantum-phase transition as a function of the structural and magnetic dimensionality. Coupling is maximized in [Cu(pyz)1.5(4-HOpy)2](ClO4)2 because of its ladderlike character. Although spin-lattice interactions can also be explored under compression, differences in the local structure and dimensionality drive these materials to unique high-pressure phases. Symmetry analysis suggests that the high-pressure phase of the ClO4- compound may be ferroelectric.

6.
Proc Natl Acad Sci U S A ; 116(45): 22526-22530, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636209

RESUMO

The Earth's mantle transition zone (MTZ) is often considered an internal reservoir for water because its major minerals wadsleyite and ringwoodite can store several oceans of structural water. Whether it is a hydrous layer or an empty reservoir is still under debate. Previous studies suggested the MTZ may be saturated with iron metal. Here we show that metallic iron reacts with hydrous wadsleyite under the pressure and temperature conditions of the MTZ to form iron hydride or molecular hydrogen and silicate with less than tens of parts per million (ppm) water, implying that water enrichment is incompatible with iron saturation in the MTZ. With the current estimate of water flux to the MTZ, the iron metal preserved from early Earth could transform a significant fraction of subducted water into reduced hydrogen species, thus limiting the hydration of silicates in the bulk MTZ. Meanwhile, the MTZ would become gradually oxidized and metal depleted. As a result, water-rich region can still exist near modern active slabs where iron metal was consumed by reaction with subducted water. Heterogeneous water distribution resolves the apparent contradiction between the extreme water enrichment indicated by the occurrence of hydrous ringwoodite and ice VII in superdeep diamonds and the relatively low water content in bulk MTZ silicates inferred from electrical conductivity studies.

7.
Lipids Health Dis ; 18(1): 151, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286991

RESUMO

BACKGROUND: Free fatty acid (FFA) accumulation in proximal tubules plays a fundamental role in the progress of kidney disease. Here, we reported a rare case with undetectable serum FFAs and further evaluated the changes of serum FFAs in patients with chronic renal failure (CRF). METHODS: We analyzed the clinical data of a rare case and 574 CRF patients. The mRNA expression of lipoprotein lipase (LPL), hepatic lipase (HL) and fatty acid synthase (FASN) were determined in the rare case and 30 age-matched healthy males with qPCR. RESULTS: This rare case had serious proteinuria, hyperglycemia, lipid disorders and bilateral renal glomerular filtration dysfunction. Compared with healthy males, this case showed a 1.49-fold increase of LPL expression (P < 0.01), a 3.38-fold reduction of HL expression (P < 0.001), and no significant change of FASN expression (P > 0.05). In total, 21.6% of CRF patients showed abnormal FFAs. Biochemical parameters such as blood urea nitrogen (BUN) and creatinine (CREA) significantly differed among groups with low-, normal- or high-level-FFAs. Moreover, serum FFAs was found to be associated with BUN. FFAs decreased in the group with higher BUN (> 17.4 mmol/L) and in the group with lower estimated glomerular filtration rate (eGFR) (< 15 mL/min/1.73m2). CONCLUSIONS: The proteinuria, HL low expression and renal function failure may contribute to the FFA reduction, which might imply that the renal function is severely damaged.


Assuntos
Ácidos Graxos não Esterificados/sangue , Falência Renal Crônica/sangue , Adulto , Idoso , Análise Química do Sangue , Estudos de Casos e Controles , Ácido Graxo Sintase Tipo I/genética , Feminino , Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/fisiopatologia , Lipase/genética , Transtornos do Metabolismo dos Lipídeos/sangue , Transtornos do Metabolismo dos Lipídeos/etiologia , Lipase Lipoproteica/genética , Masculino , Pessoa de Meia-Idade , Proteinúria/sangue , Proteinúria/etiologia
8.
Pathol Res Pract ; 215(8): 152468, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31171380

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant cancers around the world. However, the early biomarkers for its detection and treatment are limited currently. Exosomes, classified as intercellular messenger shuttling their cargoes between cells, regulate cell differentiation and tissue development. They contain messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), proteins, lipids and transcription factors. Therefore, exosomes play a crucial role in the development of HCC. In this review, we highlight the exosomal cargoes which could serve as biomarkers for the prediction and diagnosis of HCC. Exosomes are involved in metastases of HCC and they show great potential in immunotherapy and drug resistance mechanism. In summary, exosome suggests new clues in clinical application of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Progressão da Doença , Humanos , Neoplasias Hepáticas/patologia , RNA Mensageiro/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(19): 9186-9190, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004055

RESUMO

Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 ± 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30062093

RESUMO

N6-methyladenosine (m6A) epitranscriptional modification has recently gained much attention. Through the development of m6A sequencing, the molecular mechanism and importance of m6A have been revealed. m6A is the most abundant internal modification in higher eukaryotic mRNAs, which plays crucial roles in mRNA metabolism and multiple biological processes. In this review, we introduce the characteristics of m6A regulators, including "writers" that create m6A mark, "erasers" that show demethylation activity and "readers" that decode m6A modification to govern the fate of modified transcripts. Moreover, we highlight the roles of m6A modification in several common cancers, including solid and non-solid tumors. The regulators of m6A exert enormous functions in cancer development, such as proliferation, migration and invasion. Especially, with the underlying mechanisms being uncovered, m6A and its regulators are expected to be the targets for the diagnosis and treatment of cancers.

11.
Proc Natl Acad Sci U S A ; 115(32): 8076-8081, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038004

RESUMO

Materials in metastable states, such as amorphous ice and supercooled condensed matter, often exhibit exotic phenomena. To date, achieving metastability is usually accomplished by rapid quenching through a thermodynamic path function, namely, heating-cooling cycles. However, heat can be detrimental to organic-containing materials because it can induce degradation. Alternatively, the application of pressure can be used to achieve metastable states that are inaccessible via heating-cooling cycles. Here we report metastable states of 2D organic-inorganic hybrid perovskites reached through structural amorphization under compression followed by recrystallization via decompression. Remarkably, such pressure-derived metastable states in 2D hybrid perovskites exhibit enduring bandgap narrowing by as much as 8.2% with stability under ambient conditions. The achieved metastable states in 2D hybrid perovskites via compression-decompression cycles offer an alternative pathway toward manipulating the properties of these "soft" materials.

12.
Phys Rev Lett ; 118(14): 146601, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430499

RESUMO

Large-volume, phase-pure synthesis of BC8 silicon (Ia3[over ¯], cI16) has enabled bulk measurements of optical, electronic, and thermal properties. Unlike previous reports that conclude BC8-Si is semimetallic, we demonstrate that this phase is a direct band gap semiconductor with a very small energy gap and moderate carrier concentration and mobility at room temperature, based on far- and midinfrared optical spectroscopy, temperature-dependent electrical conductivity, Seebeck and heat capacity measurements. Samples exhibit a plasma wavelength near 11 µm, indicating potential for infrared plasmonic applications. Thermal conductivity is reduced by 1-2 orders of magnitude depending on temperature as compared with the diamond cubic (DC-Si) phase. The electronic structure and dielectric properties can be reproduced by first-principles calculations with hybrid functionals after adjusting the level of exact Hartree-Fock (HF) exchange mixing. These results clarify existing limited and controversial experimental data sets and ab initio calculations.

13.
Sci Rep ; 7: 44078, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276479

RESUMO

Highly efficient energy storage is in high demand for next-generation clean energy applications. As a promising energy storage material, the application of Mn2O3 is limited due to its poor electrical conductivity. Here, high-pressure techniques enhanced the electrical conductivity of Mn2O3 significantly. In situ synchrotron micro X-Ray diffraction, Raman spectroscopy and resistivity measurement revealed that resistivity decreased with pressure and dramatically dropped near the phase transition. At the highest pressure, resistivity reduced by five orders of magnitude and the sample showed metal-like behavior. More importantly, resistivity remained much lower than its original value, even when the pressure was fully released. This work provides a new method to enhance the electronic properties of Mn2O3 using high-pressure treatment, benefiting its applications in energy-related fields.

14.
Inorg Chem ; 55(23): 12172-12178, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934427

RESUMO

Magnetoelastic coupling in the quantum magnet [Ni(HF2)(pyrazine)2]SbF6 has been investigated via vibrational spectroscopy using temperature, magnetic field, and pressure as tuning parameters. While pyrazine is known to be a malleable magnetic superexchange ligand, we find that HF2- is surprisingly sensitive to external stimuli and is actively involved in both the magnetic quantum phase transition and the series of pressure-induced structural distortions. The amplified spin-lattice interactions involving the bifluoride ligand can be understood in terms of the relative importance of the intra- and interplanar magnetic energy scales.

15.
J Phys Condens Matter ; 28(50): 505701, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27792668

RESUMO

We present a study of the high-pressure behavior of BaReH9, a novel hydrogen-rich compound, using optical, Raman, and infrared spectroscopy as well as synchrotron x-ray diffraction. The x-ray diffraction measurements demonstrate that BaReH9 retains its hexagonal structure on room temperature compression up to 40 GPa. Optical absorption shows the absence of a gap closure to 80 GPa. Raman and IR spectra reveal the pressure evolution of a newly observed phonon peak, and large peak broadening with increasing pressure. These data constrain the disorder present in the material following the P-T paths explored.

16.
Angew Chem Int Ed Engl ; 55(39): 12040-4, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27561179

RESUMO

Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

17.
Nat Commun ; 7: 12214, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27426219

RESUMO

Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

18.
Proc Natl Acad Sci U S A ; 113(32): 8910-5, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444014

RESUMO

The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.

19.
Nanoscale ; 8(23): 11803-9, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280175

RESUMO

We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.

20.
Inorg Chem ; 55(5): 1956-61, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26863096

RESUMO

We combined synchrotron-based infrared spectroscopy, Raman scattering, and diamond anvil cell techniques with complementary lattice dynamics calculations to reveal local lattice distortions in Mn[N(CN)2]2 under compression. Strikingly, we found a series of transitions involving octahedral counter-rotations, changes in the local Mn environment, and deformations of the superexchange pathway. In addition to reinforcing magnetic property trends, these pressure-induced local lattice distortions may provide an avenue for the development of new functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA