Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
Huan Jing Ke Xue ; 44(8): 4575-4584, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694651

RESUMO

The objective of this study was to explore the microecological variability in farmland soil fertility in response to millet-peanut intercropping patterns by clarifying the effects of millet-peanut 4:4 intercropping on soil bacterial community structure and its diversity, as well as to provide a reference basis for promoting ecological restoration and arable land quality improvement in the lower Yellow River farmland. The Illumina MiSeq high-throughput sequencing technology and QIIME 2 platform were used to analyze the differences in bacterial community composition and their influencing factors in five soils[sole millet (SM), sole peanut (SP), intercropping millet (IM), intercropping peanut (IP), and millet-peanut intercropping (MP)] and to predict their ecological functions. The results showed that the α-diversity of intercropping soil bacterial communities differed from that of monocropping, though not significantly, whereas the ß-diversity was significantly different (P<0.05). A total of 7081 ASVs were obtained from all soil samples, classified into 34 phyla, 109 orders, 256 class, 396 families, 710 genera, and 1409 species, of which 727 ASVs were shared, accounting for 24.5% to 27.8% in five soil species. The bacterial communities of millet-peanut intercropping and its monocropping soils were similar in phylum composition but varied in relative abundance. All five soils were dominated by the Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, with a relative abundance of 79.40%-81.33%. Soil organic carbon and alkaline nitrogen were the most important factors causing differences in the structures of the five soil bacterial communities at the phylum and genus levels, respectively. The PICRUSt functional prediction revealed that the relative abundance of primary functional metabolism was the largest (78.9%-79.3%), and the relative abundance of secondary functional exogenous biodegradation and metabolism fluctuated the most (CV=3.782%). In terms of the BugBase phenotype, the relative abundance of oxidative stress-tolerant bacteria increased in intercropping millet or peanut soils compared to that in the corresponding monocultures and significantly increased in intercropping millet soils compared to that in sole millet (P<0.05). Oxidative stress-tolerant, Gram-positive, and aerobic phenotypes were highly significantly positively correlated with each other (P<0.01), and all three showed highly significant negative correlations with potential pathogenicity and Gram-negative and anaerobic phenotypes (P<0.01). This showed that millet-peanut intercropping resulted in differences in soil bacterial community diversity, abundance, and metabolic functions and the possibility of reducing the occurrence of potential soil diseases. It can be used to regulate the soil microbiological environment to promote ecological restoration and sustainable development of farmland in the lower Yellow River.


Assuntos
Arachis , Milhetes , Humanos , Carbono , Fazendas , Rios , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37674537

RESUMO

Quercetin was extracted from Portulaca oleracea L. through biphasic acid hydrolysis to investigate its potential as a suppressor of dipeptidyl peptidase IV (DPP-IV) and its hypoglycemic effect in type 2 diabetic mice. The extraction procedure was optimized utilizing the response surface method (RSM) in a single-factor experimental setting. An extraction efficiency of 0.675% was achieved using the following optimized parameters: 0.064 mol/L vitriol, 1 : 109.155 solid-liquid ratio, and 21.408 min ultrasonication. Overall, findings indicate the effectiveness of quercetin extraction. A mouse model for type 2 diabetes was established to receive oral treatment with various quercetin concentrations for 8 weeks. Fasting blood glucose (FBG) and the DPP-IV activity in the serum were significantly reduced. The weight and insulin levels of the mice in the quercetin group were raised compared to those in the model group (P < 0.01). Quercetin dose-dependently inhibited postprandial blood glucose excursions, as demonstrated by the oral glucose tolerance test. These results confirmed that quercetin has hypoglycemic effects and considerably improves insulin sensitivity via DPP-IV targeting.

3.
Angew Chem Int Ed Engl ; : e202312547, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752890

RESUMO

Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C-H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C-H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C-H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN2'-allylation pathway.

4.
Microb Genom ; 9(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37754275

RESUMO

Aeromonas veronii is an opportunistic pathogen that affects both fish and mammals, including humans, leading to bacteraemia, sepsis, meningitis and even death. The increasing virulence and drug resistance of A. veronii are of significant concern and pose a severe risk to public safety. The Type I restriction-modification (RM) system, which functions as a bacterial defence mechanism, can influence gene expression through DNA methylation. However, little research has been conducted to explore its origin, evolutionary path, and relationship to virulence and drug resistance in A. veronii. In this study, we analysed the pan-genome of 233 A. veronii strains, and the results indicated that it was 'open', meaning that A. veronii has acquired additional genes from other species. This suggested that A. veronii had the potential to adapt and evolve rapidly, which might have contributed to its drug resistance. One Type I methyltransferase (MTase) and two complete Type I RM systems were identified, namely AveC4I, AveC4II and AveC4III in A. veronii strain C4, respectively. Notably, AveC4I was exclusive to A. veronii C4. Phylogenetic analysis revealed that AveC4I was derived from horizontal gene transfer from Thiocystis violascens and exchanged genes with the human pathogen Comamonas kerstersii. Single molecule real-time sequencing was applied to identify the motif methylated by AveC4I, which was unique and not recognized by any reported MTases in the REBASE database. We also annotated the functions and pathways of the genes containing the motif, revealing that AveC4I may control drug resistance in A. veronii C4. Our findings provide new insight on the mechanisms underlying drug resistance in pathogenic bacteria. By identifying the specific genes and pathways affected by AveC4I, this study may aid in the development of new therapeutic approaches to combat A. veronii infections.

5.
Parkinsonism Relat Disord ; 115: 105860, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37742502

RESUMO

OBJECTIVE: Levodopa administration can induce or worsen orthostatic hypotension (OH) in patients with Parkinson's disease (PD). Understanding of acute OH post levodopa (AOHPL) is important for rational drug use in PD patients. Primary objective of this study was to investigate the incidence of AOHPL in PD patients. The secondary objectives were a) hemodynamic character of AOHPL; b) risk factors of AOHPL; c) relationship between motor responsiveness and blood pressure (BP) change. METHODS: 490 PD inpatients underwent acute levodopa challenge test (LCT). Supine-to-standing test (STS) was done 4 times during LCT, including before levodopa and every hour post levodopa intake within 3 h. Patients were classified into two groups, AOHPL and non-AOHPL. A comprehensive set of clinical features scales was assessed, including both motor (e.g., motor response, wearing-off) and nonmotor symptoms (e.g., autonomic dysfunction, neuropsychology). RESULTS: 33.1% PD patients had OH before drug, 50.8% the same subjects had AOHPL during levodopa effectiveness. PD patients who had better response to levodopa likely to have lower standing mean artery pressure (MAP) and severer systolic BP drop after levodopa intake. BP increased when the motor performance worsened and vice versa. Beneficial response was a risk factors of AOHPL (OR = 1.624, P = 0.017). CONCLUSIONS: AOHPL was very common in PD patients. We suggested that PD patients with risk factors should monitor hemodynamic change during LCT to avoid AOHPL following the introduction or increase of oral levodopa. The fluctuations of BP were complicated and multifactorial, likely caused by the process of PD and levodopa both.

6.
Org Biomol Chem ; 21(36): 7305-7310, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668247

RESUMO

A highly enantio- and diastereoselective approach has been developed for the synthesis of chiral phosphono dihydropyranones. This approach is enabled by Pd/chiral isothiourea relay catalysis under mild reaction conditions, starting from readily available benzyl bromides, CO, and α-ketophosphonates. The cascade reaction involves the generation of a ketene intermediate from Pd-catalyzed carbonylation of benzyl bromide and subsequent chiral Lewis base catalyzed formal [4 + 2] reaction. Phosphono lactone products can also be transformed to chiral 1,5-diester products in good yield and high stereoselectivity.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37581967

RESUMO

Learning-based stereo methods usually require a large scale dataset with depth, however obtaining accurate depth in the real domain is difficult, but groundtruth depth is readily available in the simulation domain. In this paper we propose a new framework, ActiveZero++, which is a mixed domain learning solution for active stereovision systems that requires no real world depth annotation. In the simulation domain, we use a combination of supervised disparity loss and self-supervised loss on a shape primitives dataset. By contrast, in the real domain, we only use self-supervised loss on a dataset that is out-of-distribution from either training simulation data or test real data. To improve the robustness and accuracy of our reprojection loss in hard-to-perceive regions, our method introduces a novel self-supervised loss called temporal IR reprojection. Further, we propose the confidence-based depth completion module, which uses the confidence from the stereo network to identify and improve erroneous areas in depth prediction through depth-normal consistency. Extensive qualitative and quantitative evaluations on real-world data demonstrate state-of-the-art results that can even outperform a commercial depth sensor. Furthermore, our method can significantly narrow the Sim2Real domain gap of depth maps for state-of-the-art learning based 6D pose estimation algorithms.

8.
Photodiagnosis Photodyn Ther ; 43: 103737, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549816

RESUMO

The intercellular tight junction inhibits tumor imaging efficiency of nanomaterials, and enhanced cellular drug delivery with efficient detection is an important tool for tumor diagnosis. Herein, we fabricate fluorescence gold nanoclusters (Au NCs) decorated gas vesicles (GV-Au) for ultrasound (US)-mediated enhanced cellular delivery and imaging, in which GVs are living cell derived protein bubbles. GV-Au is rod-shaped sack-like structure around 230 nm, and displays improved stability and fluorescence ability compared with free Au NCs. Flow cytometry assay confirms the intracellular localization of Au NCs and GV-Au with a respective 2.20-fold enhanced cellular uptake post US treatment. Confocal images reveal the efficient cellular uptake of GV-Au under US impact, indicating that GV-Au is suitable for cellular and in vivo fluorescence imaging. Our strategy provides a new idea for efficient fluorescence imaging by penetrating cell membranes at the presence of US treatment.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Ouro/química , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Fluorescência , Imagem Óptica , Nanopartículas Metálicas/química
9.
J Hematol Oncol ; 16(1): 89, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533128

RESUMO

RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.


Assuntos
MicroRNAs , Neoplasias , Humanos , Metiltransferases/genética , Adenosina/metabolismo , Metilação , MicroRNAs/metabolismo , Biologia , Neoplasias/tratamento farmacológico
10.
Front Microbiol ; 14: 1231978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637109

RESUMO

Soil microorganisms play important roles in promoting soil ecosystem restoration, but much of the current research has been limited to changes in microbial community structure in general, and little is known regarding the soil physicochemical property and microbial community structure. In this study, four organic fertilizers were first prepared based on tea oil camellia shell (TOCS). Our findings indicate that the application of BOFvo increased both total pore volume and BET surface area of the rhizosphere soils, as well there was a remarkable enhancement in total organic matter (TOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), total potassium (TK), and available potassium (AK) contents of the rhizosphere soils. Meanwhile, in comparison to the CK and CF groups, the utilization of BOFvo led to a substantial increase in both average yield and fruiting rate per plant at maturity, as well resulted in a significant increase in TN and TP contents of tea oil camellia leaves. Furthermore, our findings suggest that the application of TOCS-based organic fertilizers significantly enhances the microbial diversity in the rhizosphere soils with Proteobacteria and Ascomycota being the dominant bacterial and fungal phyla, respectively, and Rhodanobacter and Fusarium being the dominant bacterial and fungal genus, respectively. Redundancy analysis (RDA) indicates that the physicochemical characteristics of TOCS-based organic fertilizers had a significant impact on the composition and distribution of microbial communities in the rhizosphere soils. This study will facilitate the promotion and application of TOCS-based organic fertilizers, thereby establishing a foundation for the reuse of tea oil camellia waste resources.

11.
Carbohydr Polym ; 318: 121133, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479443

RESUMO

Postharvest damage makes cassava roots vulnerable to pathogen infections and decay, which significantly hinders the development of the cassava industry. The objective of this study was to assess the antibacterial properties of chitosan in vitro, as well as its effect on wound healing and resistance in cassava roots. The findings demonstrated that the bacteriostatic effect of chitosan became increasingly prominent as the concentration of chitosan enhanced. Chitosan at a concentration of 0.5 mg/mL was revealed to significantly inhibit the germination of P. palmivora spores and damage to their structure. Moreover, chitosan activated the transcription of crucial genes and enzyme activities associated with the phenylpropane metabolism pathway in cassava roots, thus promoting rapid lignin accumulation and resulting in the early formation of a fracture layer. Chitosan was also found to enhance cassava root resistance by promoting the expression of pathogenesis-related proteins and the accumulation of flavonoids and total phenols. After 48 h of inoculation, cassava roots treated with chitosan exhibited a 51.4 % and 53.4 % decrease in lesion area for SC9 and SC6 varieties, respectively. The findings of this study offer a novel approach for managing postharvest deterioration of cassava roots.

12.
PLoS One ; 18(7): e0288154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410737

RESUMO

BACKGROUND: With the increasing pressures of modern life and work, combined with a growing older population, the incidence of comorbid anxiety and myocardial infarction (MI) is increasing. Anxiety increases the risk of adverse cardiovascular events in patients with MI and significantly affects their quality of life. However, there is an ongoing controversy regarding the pharmacological treatment of anxiety in patients with MI. The concomitant use of commonly prescribed selective serotonin reuptake inhibitors (SSRIs) and antiplatelet medications such as aspirin and clopidogrel may increase the risk of bleeding. Conventional exercise-based rehabilitation therapies have shown limited success in alleviating anxiety symptoms. Fortunately, non-pharmacological therapies based on traditional Chinese medicine (TCM) theory, such as acupuncture, massage, and qigong, have demonstrated promising efficacy in treating MI and comorbid anxiety. These therapies have been widely used in community and tertiary hospital settings in China to provide new treatment options for patients with anxiety and MI. However, current studies on non-pharmacological TCM-based therapies have predominantly featured small sample sizes. This study aims to comprehensively analyze and explore the effectiveness and safety of these therapies in treating anxiety in patients with MI. METHOD: We will systematically search six English and four Chinese databases by employing a pre-defined search strategy and adhering to the unique rules and regulations of each database to identify studies that fulfilled our inclusion criteria, to qualify for inclusion, patients must be diagnosed with both MI and anxiety, and they must have undergone non-pharmacological TCM therapies, such as acupuncture, massage, or qigong, whereas the control group received standard treatments. The primary outcome measure will be alterations in anxiety scores, as assessed using anxiety scales, with secondary outcomes encompassing the evaluations of cardiopulmonary function and quality of life. We will utilize RevMan 5.3 to conduct a meta-analysis of the collected data, and subgroup analyses will be executed based on distinct types of non-pharmacological TCM therapies and outcome measures. RESULTS: A narrative summary and quantitative analysis of the existing evidence on the treatment of anxiety patients with MI using non-pharmacological therapies guided by Traditional Chinese Medicine theory. CONCLUSION: This systematic review will investigate whether non-pharmacological interventions guided by TCM theory are effective and safe for anxiety in patients with MI, and provide evidence-based support for their clinical application. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022378391.


Assuntos
Medicina Tradicional Chinesa , Infarto do Miocárdio , Humanos , Medicina Tradicional Chinesa/métodos , Qualidade de Vida , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Ansiedade/complicações , Ansiedade/terapia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/terapia
13.
Adv Healthc Mater ; : e2301157, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392145

RESUMO

Drug delivery systems (DDSs) capable of sequential multistage drug release are urgently needed for antibacterial applications. Herein, a molecular switch-integrated, photo-responsive nanoplatform is reported based on hollow mesoporous silica nanospheres (HMSN) loaded with silver nanoparticles (Ag NPs), vancomycin (Van), and hemin (HAVH) for bacteria elimination and abscess therapy. Upon near-infrared (NIR) light irradiation, the molecular switch, hemin, can effuse from the mesopores of HMSN, triggering the release of pre-loaded Ag+ and Van, which enables photothermal-modulated drug release and synergistic photothermal-chemo therapy (PTT-CHT). The HAVH_NIR irreversibly disrupts the bacterial cell membrane, facilitating the penetration of Ag+ and Van. It is found that these compounds restrain the transcription and translation of ribosomes and lead to rapid bacterial death. Furthermore, hemin can effectively inhibit excessive inflammatory responses associated with the treatment, promoting accelerated wound healing in a murine abscess model. This work presents a new strategy for antibacterial drug delivery with high controllability and extendibility, which may benefit the development of smart multifunctional nanomedicine for diseases not limited to bacterial infections.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37431158

RESUMO

Although the antibiotics inhibit or kill pathogens, the abuse leads to the resistance formation and even "Super Bacteria." Therefore, it is urgent to explore the natural and safe alternatives such as bacteriocin. In this study, an uncharacterized bacteriocin gene cluster for Lysinibacillus boronitolerans was first predicted by genome sequencing and bioinformatics analysis, of which including two biosynthetic genes, a regulatory gene, a transport-related gene, and six other genes. Subsequently, the 10.24-kb gene cluster was expressed in Escherichia coli BL21, and the lysate effectively inhibited the growths of pathogenic bacteria containing Bacillus pumilus, Bacillus velezensis, Pseudomonas syringae pv. tomato DC3000, and Xanthomonas axonopodis pv. manihotis. The antibacterial substance was purified by 70% ammonium sulfate precipitation and further identified by liquid chromatography-tandem mass spectrometry. The results showed that the antibacterial substance consisted of 44 amino acids and had 24.1% sequence identity with the cyanobacterin Piricyclamide 7005 E4 PirE4, a bacteriocin analogue. The minimal set of genes required for the biosynthesis of the antibacterial substance was determined by site-directed mutagenesis, suggesting both a transcriptional repressor and a phosphohydroxythreonine transaminase were essential. Subsequently, the evolution and conservation of the two proteins were analyzed among 22 Lysinibacillus species. Among them, the residues responsible for functions were identified. Collectively, our results set a solid foundation for investigation of the biosynthesis and application of bacteriocin.

15.
Polymers (Basel) ; 15(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514463

RESUMO

To optimize the bamboo heat treatment process, the corresponding evolution rules under various heat treatment conditions must be determined. When the heat treatment time and temperature remained constant, the effects of different heat treatment pressures on the equilibrium moisture content, dimensional stability, mechanical properties, and chemical composition of bamboo were systematically investigated. In this experiment, bamboo without heat treatment was used as the control group. The experimental findings demonstrate the following: (1) The equilibrium moisture content of heat-treated bamboo gradually decreases with increasing treatment pressure. When the heat treatment pressure was set at 0.1, 0.15, 0.2, and 0.25 MPa, the bamboo's equilibrium water content decreased to 12.1%, 11.7%, 9.9%, and 8.6%, respectively, while that of the control group was 13.8%. (2) The dimensional stability of bamboo was enhanced with increasing heat treatment pressure. At pressures of 0.1, 0.15, 0.2, and 0.25 MPa, the radial air-dry shrinkage rates of the heat-treated bamboo decreased to 3.4%, 3.4%, 2.6%, and 2.3%, respectively, while the tangential air-dry shrinkage rates reduced to 5.6%, 5.1%, 3.3%, and 3.0%. In comparison, the radial and tangential air-dry shrinkage rates of the control group were measured as 3.6% and 5.8%, respectively. Similarly, the radial and tangential full-dry shrinkage of bamboo exhibited a similar trend. (3) With the increase in heat treatment pressure, the bending strength and longitudinal compressive strength of bamboo exhibited an initial rise followed by a decline. When it was at heat treatment pressures of 0.1, 0.15, 0.2, and 0.25 MPa, the corresponding bending strengths of the heat-treated bamboo were measured as 41.2, 26.7, 22.4, and 20.4 MPa, respectively; while the longitudinal compressive strengths were recorded as 42.6, 38.1, 29.1, and 25.3 MPa. In comparison, the bending and longitudinal compressive strengths of the control group were measured as 39.8 and 38.5 MPa, respectively. It is evident that the optimal heat treatment pressure for bamboo is 0.1 MPa, resulting in a significant increase of 3.5% and 10.6% in bending strength and longitudinal compressive strength, respectively, compared to the control group. (4) Based on the FTIR and XRD patterns of bamboo samples, a range of physical and chemical transformations were observed during the heat treatment process, including cellulose adsorb water evaporation, hemicellulose and cellulose degradation, as well as acetyl group hydrolysis on the molecular chain of hemicellulose. These changes collectively impacted the physical and mechanical properties of bamboo.

16.
Sci Total Environ ; 898: 165191, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37391134

RESUMO

Dissolved inorganic carbon (DIC) fluxes account for over one-third of the total carbon transported in most rivers. The DIC budget for glacial meltwater of the Tibetan Plateau (TP), however, is still poorly understood, despite the fact, the TP has the largest glacier distribution outside of the Poles. In this study, the Niyaqu and Qugaqie catchments in the central TP were selected to examine the influence of glaciation on the DIC budget in vertical evasion (CO2 exchange rate at the water-air interface) and lateral transport (sources and fluxes) from 2016 to 2018. Significant seasonal variation in DIC concentration was found in the glaciated Qugaqie catchment, but was absent in the not glaciated Niyaqu catchment. δ13CDIC showed seasonal changes for both catchments, with more depleted signatures during the monsoon season. The average CO2 exchange rates in river water of Qugaqie were ~8 times lower compared to Niyaqu with values of -1294.6 ± 438.58 mg/m2/h and -163.4 ± 581.2 mg/m2/h, respectively, indicating that proglacial rivers can act as a substantial CO2 sink due to CO2 consumption by chemical weathering. DIC sources were quantified via the MixSIAR model using δ13CDIC and ionic ratios. During the monsoon season, the contribution from carbonate/silicate weathering driven by atmospheric CO2 was 13-15 % lower, while biogenic CO2 involved in chemical weathering was 9-15 % higher, indicating a seasonal control on weathering agents. Carbonate dissolution driven by H2SO4/HNO3 was the most important contributor to DIC in both catchments (40.7 ± 2.2 % in Niyaqu and 48.5 ± 3.1 % in Qugaqie). The net CO2 consumption rate in the not glaciated Niyaqu catchment was close to 0 (-0.07 ± 0.04 × 105 mol/km2/y), indicating the carbon sink effect caused by chemical weathering in this area was weak. The net CO2 consumption rate in the glaciated Qugaqie catchment, however, was much lower than that in the not glaciated catchment with a value of -0.28 ± 0.05 × 105 mol/km2/y. This study highlights that chemical weathering in small glaciated catchments of the central TP plays an active role in releasing CO2 to the atmosphere.

17.
Bioresour Technol ; 385: 129344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369319

RESUMO

Appropriate fractionation of lignocellulosic biomass into useable forms is a key challenge to achieving an economic bioethanol production. In the present study, four different fractionation strategies of hydrothermal-, NaOH-, ethanol-, and NaOH catalyzed ethanol pretreatment were investigated to compare their abilities of cellulose conversion. Results showed that NaOH catalyzed ethanol pretreatment showed a rather high extent of delignification of 85.92%, which also enhanced the retention of cellulose (92.56%) and hemicellulose (76.57%); while other pretreatments tended to produce cellulose fraction which was insufficient to achieve the whole component utilization. After simultaneous saccharification and fermentation at high solids loading, synergistic maximization of xylose (42.47 g/L) and ethanol (85.74 g/L) output was achieved via alkaline ethanol pretreatment. Lignin characterization information showed that alkaline ethanol pretreatment facilitates the cleavage of ß-O-4 linkage and further converts into arylglycerol. Moreover, less condensed substructure units with high processing activity were also generated in S- and G- lignin.


Assuntos
Lignina , Populus , Lignina/química , Biomassa , Hidróxido de Sódio , Carboidratos , Celulose/metabolismo , Fermentação , Hexoses , Etanol , Populus/metabolismo , Hidrólise
18.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297214

RESUMO

The corrosion behavior of alumina-forming austenitic (AFA) stainless steels with different Nb additions in a supercritical carbon dioxide environment at 500 °C, 600 °C, and 20 MPa was investigated. The steels with low Nb content were found to have a novel structure with a double oxide as an outer Cr2O3 oxide film and an inner Al2O3 oxide layer with discontinuous Fe-rich spinels on the outer surface and a transition layer consisting of Cr spinels and γ'-Ni3Al phases randomly distributed under the oxide layer. Oxidation resistance was improved by accelerating diffusion through refined grain boundaries after the addition of 0.6 wt.% Nb. However, the corrosion resistance decreased significantly at higher Nb content due to the formation of continuous thick outer Fe-rich nodules on the surface and an internal oxide zone, and Fe2(Mo, Nb) laves phases were also detected, which prevented the outward diffusion of Al ions and promoted the formation of cracks within the oxide layer, resulting in unfavorable effects on oxidation. After exposure at 500 °C, fewer spinels and thinner oxide scales were found. The specific mechanism was discussed.

19.
Phys Rev Lett ; 130(22): 227201, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327430

RESUMO

Noise is a fundamental challenge for sensors deployed in daily environments for ambient sensing, health monitoring, and wireless networking. Current strategies for noise mitigation rely primarily on reducing or removing noise. Here, we introduce stochastic exceptional points and show the utility to reverse the detrimental effect of noise. The stochastic process theory illustrates that the stochastic exceptional points manifest as fluctuating sensory thresholds that give rise to stochastic resonance, a counterintuitive phenomenon in which the added noise increases the system's ability to detect weak signals. Demonstrations using a wearable wireless sensor show that the stochastic exceptional points lead to more accurate tracking of a person's vital signs during exercise. Our results may lead to a distinct class of sensors that overcome and are enhanced by ambient noise for applications ranging from healthcare to the internet of things.


Assuntos
Ruído , Humanos , Processos Estocásticos , Limiar Sensorial
20.
Cancer Med ; 12(16): 16756-16773, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377377

RESUMO

INTRODUCTION: Tumor-associated bacteria and gut microbiota have gained significant attention in recent years due to their potential role in cancer development and therapeutic response. This review aims to discuss the contributions of intratumor bacteria outside the gastrointestinal tract, in addition to exploring the mechanisms, functions, and implications of these bacteria in cancer therapy. METHODS: We reviewed current literature on intratumor bacteria and their impact on tumorigenesis, progression, metastasis, drug resistance, and anti-tumor immune modulation. Additionally, we examined techniques used to detect intratumor bacteria, precautions necessary when handling low microbial biomass tumor samples, and the recent progress in bacterial manipulation for tumor treatment. RESULTS: Research indicates that each type of cancer uniquely interacts with its microbiome, and bacteria can be detected even in non-gastrointestinal tumors with low bacterial abundance. Intracellular bacteria have the potential to regulate tumor cells' biological behavior and contribute to critical aspects of tumor development. Furthermore, bacterial-based anti-tumor therapies have shown promising results in cancer treatment. CONCLUSIONS: Understanding the complex interactions between intratumor bacteria and tumor cells could lead to the development of more precise cancer treatment strategies. Further research into non-gastrointestinal tumor-associated bacteria is needed to identify new therapeutic approaches and expand our knowledge of the microbiota's role in cancer biology.


Assuntos
Microbiota , Neoplasias , Humanos , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Neoplasias/terapia , Bactérias , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...