Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(2): 029904, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376722

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.119.120503.

2.
Phys Rev Lett ; 118(5): 050401, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28211725

RESUMO

We investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-preserving channels. We introduce a hierarchy of such evolutions encompassing Markovian and weakly and strongly non-Markovian processes and provide simple criteria to distinguish between the classes, based on the degree of positivity of intermediate Gaussian maps. We present an intuitive classification of all one-mode Gaussian channels according to their non-Markovianity degree and show that weak non-Markovianity has an operational significance, as it leads to a temporary phase-insensitive amplification of Gaussian inputs beyond the fundamental quantum limit. Explicit examples and applications are discussed.

3.
Phys Rev Lett ; 119(12): 120503, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341664

RESUMO

Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement. We then consider the problem of teleporting single-mode coherent states with Gaussian-distributed displacement in phase space. Performing a geometrical optimization over phase-insensitive Gaussian channels, we determine the maximum average teleportation fidelity achievable with any finite entanglement and for any realistically finite variance of the input distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...