Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 572(7769): 323-328, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31367044

RESUMO

Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power.

3.
Nat Genet ; 51(3): 452-469, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778226

RESUMO

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Homeostase/genética , Lipídeos/genética , Proteínas/genética , Animais , Distribuição da Gordura Corporal/métodos , Índice de Massa Corporal , Estudos de Casos e Controles , Drosophila/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fatores de Risco , Relação Cintura-Quadril/métodos
4.
Nat Genet ; 50(11): 1505-1513, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30297969

RESUMO

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

5.
Nat Commun ; 9(1): 3753, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218074

RESUMO

A detailed understanding of the genome-wide variability of single-nucleotide germline mutation rates is essential to studying human genome evolution. Here, we use ~36 million singleton variants from 3560 whole-genome sequences to infer fine-scale patterns of mutation rate heterogeneity. Mutability is jointly affected by adjacent nucleotide context and diverse genomic features of the surrounding region, including histone modifications, replication timing, and recombination rate, sometimes suggesting specific mutagenic mechanisms. Remarkably, GC content, DNase hypersensitivity, CpG islands, and H3K36 trimethylation are associated with both increased and decreased mutation rates depending on nucleotide context. We validate these estimated effects in an independent dataset of ~46,000 de novo mutations, and confirm our estimates are more accurate than previously published results based on ancestrally older variants without considering genomic features. Our results thus provide the most refined portrait to date of the factors contributing to genome-wide variability of the human germline mutation rate.

6.
Am J Hum Genet ; 102(6): 1204-1211, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861106

RESUMO

There is a limited understanding about the impact of rare protein-truncating variants across multiple phenotypes. We explore the impact of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased hospitalization, and reduced age at enrollment. Gene sets implicated from GWASs did not show a significant protein-truncating variants burden beyond what was captured by established Mendelian genes. In conclusion, we provide a thorough investigation of the impact of rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.

8.
Nat Genet ; 50(5): 766-767, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29549330

RESUMO

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.

9.
Hum Mol Genet ; 27(9): 1664-1674, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481666

RESUMO

Comprehensive metabolite profiling captures many highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serum amino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6 million genotyped and imputed variants in 8545 non-diabetic Finnish men from the METabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966). We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579, minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboring missense variants of MAF <1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017, MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447, MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend<0.001). These novel signals provide further insight into the molecular mechanisms of amino acid metabolism and potentially, their perturbations in disease.

11.
Proc Natl Acad Sci U S A ; 115(2): 379-384, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279374

RESUMO

A major challenge in evaluating the contribution of rare variants to complex disease is identifying enough copies of the rare alleles to permit informative statistical analysis. To investigate the contribution of rare variants to the risk of type 2 diabetes (T2D) and related traits, we performed deep whole-genome analysis of 1,034 members of 20 large Mexican-American families with high prevalence of T2D. If rare variants of large effect accounted for much of the diabetes risk in these families, our experiment was powered to detect association. Using gene expression data on 21,677 transcripts for 643 pedigree members, we identified evidence for large-effect rare-variant cis-expression quantitative trait loci that could not be detected in population studies, validating our approach. However, we did not identify any rare variants of large effect associated with T2D, or the related traits of fasting glucose and insulin, suggesting that large-effect rare variants account for only a modest fraction of the genetic risk of these traits in this sample of families. Reliable identification of large-effect rare variants will require larger samples of extended pedigrees or different study designs that further enrich for such variants.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética , Americanos Mexicanos/genética , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/patologia , Saúde da Família , Feminino , Frequência do Gene , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Locos de Características Quantitativas/genética , Sequenciamento Completo do Genoma/métodos
12.
Nat Genet ; 50(1): 26-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29273807

RESUMO

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

13.
Sci Data ; 4: 170179, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257133

RESUMO

To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Variação Genética , Grupo com Ancestrais do Continente Europeu , Humanos
14.
PLoS Genet ; 13(10): e1007079, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084231

RESUMO

Lipid and lipoprotein subclasses are associated with metabolic and cardiovascular diseases, yet the genetic contributions to variability in subclass traits are not fully understood. We conducted single-variant and gene-based association tests between 15.1M variants from genome-wide and exome array and imputed genotypes and 72 lipid and lipoprotein traits in 8,372 Finns. After accounting for 885 variants at 157 previously identified lipid loci, we identified five novel signals near established loci at HIF3A, ADAMTS3, PLTP, LCAT, and LIPG. Four of the signals were identified with a low-frequency (0.005

Assuntos
Grupo com Ancestrais do Continente Europeu/genética , Frequência do Gene/genética , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Lipoproteínas/genética , Polimorfismo de Nucleotídeo Único/genética , Triglicerídeos/genética , HDL-Colesterol/genética , Exoma/genética , Finlândia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal/métodos
15.
Br J Psychiatry ; 211(2): 70-76, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28642257

RESUMO

BackgroundDepression and obesity are highly prevalent, and major impacts on public health frequently co-occur. Recently, we reported that having depression moderates the effect of the FTO gene, suggesting its implication in the association between depression and obesity.AimsTo confirm these findings by investigating the FTO polymorphism rs9939609 in new cohorts, and subsequently in a meta-analysis.MethodThe sample consists of 6902 individuals with depression and 6799 controls from three replication cohorts and two original discovery cohorts. Linear regression models were performed to test for association between rs9939609 and body mass index (BMI), and for the interaction between rs9939609 and depression status for an effect on BMI. Fixed and random effects meta-analyses were performed using METASOFT.ResultsIn the replication cohorts, we observed a significant interaction between FTO, BMI and depression with fixed effects meta-analysis (ß = 0.12, P = 2.7 × 10-4) and with the Han/Eskin random effects method (P = 1.4 × 10-7) but not with traditional random effects (ß = 0.1, P = 0.35). When combined with the discovery cohorts, random effects meta-analysis also supports the interaction (ß = 0.12, P = 0.027) being highly significant based on the Han/Eskin model (P = 6.9 × 10-8). On average, carriers of the risk allele who have depression have a 2.2% higher BMI for each risk allele, over and above the main effect of FTOConclusionsThis meta-analysis provides additional support for a significant interaction between FTO, depression and BMI, indicating that depression increases the effect of FTO on BMI. The findings provide a useful starting point in understanding the biological mechanism involved in the association between obesity and depression.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Índice de Massa Corporal , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Obesidade/epidemiologia , Obesidade/genética , Alelos , Estudos de Casos e Controles , Comorbidade , Predisposição Genética para Doença/genética , Humanos , Polimorfismo Genético/genética
16.
Diabetes ; 66(7): 2019-2032, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341696

RESUMO

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Grupo com Ancestrais do Continente Europeu/genética , Jejum/metabolismo , Resistência à Insulina/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Afro-Americanos/genética , Alelos , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hispano-Americanos/genética , Humanos , Razão de Chances
17.
Nature ; 542(7640): 186-190, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146470

RESUMO

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Assuntos
Estatura/genética , Frequência do Gene/genética , Variação Genética/genética , Proteínas ADAMTS/genética , Adulto , Alelos , Moléculas de Adesão Celular/genética , Feminino , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/biossíntese , Proteínas Hedgehog/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fatores Reguladores de Interferon/genética , Subunidade alfa de Receptor de Interleucina-11/genética , Masculino , Herança Multifatorial/genética , NADPH Oxidase 4 , NADPH Oxidases/genética , Fenótipo , Proteína Plasmática A Associada à Gravidez/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Proteoglicanas/biossíntese , Proteólise , Receptores Androgênicos/genética , Somatomedinas/metabolismo
18.
Nat Genet ; 48(10): 1284-1287, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571263

RESUMO

Genotype imputation is a key component of genetic association studies, where it increases power, facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is computationally demanding and, with current tools, typically requires access to a high-performance computing cluster and to a reference panel of sequenced genomes. Here we describe improvements to imputation machinery that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also describe a new web-based service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity.


Assuntos
Algoritmos , Genótipo , Simulação por Computador , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Internet
19.
Eur J Hum Genet ; 25(1): 137-146, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552965

RESUMO

Genome-wide association studies (GWASs) have been successful in discovering SNP trait associations for many quantitative traits and common diseases. Typically, the effect sizes of SNP alleles are very small and this requires large genome-wide association meta-analyses (GWAMAs) to maximize statistical power. A trend towards ever-larger GWAMA is likely to continue, yet dealing with summary statistics from hundreds of cohorts increases logistical and quality control problems, including unknown sample overlap, and these can lead to both false positive and false negative findings. In this study, we propose four metrics and visualization tools for GWAMA, using summary statistics from cohort-level GWASs. We propose methods to examine the concordance between demographic information, and summary statistics and methods to investigate sample overlap. (I) We use the population genetics Fst statistic to verify the genetic origin of each cohort and their geographic location, and demonstrate using GWAMA data from the GIANT Consortium that geographic locations of cohorts can be recovered and outlier cohorts can be detected. (II) We conduct principal component analysis based on reported allele frequencies, and are able to recover the ancestral information for each cohort. (III) We propose a new statistic that uses the reported allelic effect sizes and their standard errors to identify significant sample overlap or heterogeneity between pairs of cohorts. (IV) To quantify unknown sample overlap across all pairs of cohorts, we propose a method that uses randomly generated genetic predictors that does not require the sharing of individual-level genotype data and does not breach individual privacy.


Assuntos
Estudo de Associação Genômica Ampla/estatística & dados numéricos , Metanálise como Assunto , Locos de Características Quantitativas/genética , Alelos , Estudos de Coortes , Heterogeneidade Genética , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Software
20.
Nature ; 536(7614): 41-47, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27398621

RESUMO

The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Alelos , Análise Mutacional de DNA , Europa (Continente)/etnologia , Exoma , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA