Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Pollut ; 305: 119294, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436507

RESUMO

The presence of urban greenspace may lead to reduced personal exposure to air pollution via several mechanisms, for example, increased dispersion of airborne particulates; however, there is a lack of real-time evidence across different urban contexts. Study participants were 79 adolescents with asthma who lived in Delhi, India and were recruited to the Delhi Air Pollution and Health Effects (DAPHNE) study. Participants were monitored continuously for exposure to PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) for 48 h. We isolated normal day-to-day walking journeys (n = 199) from the personal monitoring dataset and assessed the relationship between greenspace and personal PM2.5 using different spatial scales of the mean Normalised Difference Vegetation Index (NDVI), mean tree cover (TC), and proportion of surrounding green land use (GLU) and parks or forests (PF). The journeys had a mean duration of 12.7 (range 5, 53) min and mean PM2.5 personal exposure of 133.9 (standard deviation = 114.8) µg/m3. The within-trip analysis showed weak inverse associations between greenspace markers and PM2.5 concentrations only in the spring/summer/monsoon season, with statistically significant associations for TC at the 25 and 50 m buffers in adjusted models. Between-trip analysis also indicated inverse associations for NDVI and TC, but suggested positive associations for GLU and PF in the spring/summer/monsoon season; no overall patterns of association were evident in the autumn/winter season. Associations between greenspace and personal PM2.5 during walking trips in Delhi varied across metrics, spatial scales, and season, but were most consistent for TC. These mixed findings may partly relate to journeys being dominated by walking along roads and small effects on PM2.5 of small pockets of greenspace. Larger areas of greenspace may, however, give rise to observable spatial effects on PM2.5, which vary by season.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Humanos , Índia , Parques Recreativos , Material Particulado/análise , Árvores , Caminhada
2.
Environ Epidemiol ; 6(2): e185, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35434456

RESUMO

Exposures at work have a major impact on noncommunicable diseases (NCDs). Current risk reduction policies and strategies are informed by existing scientific evidence, which is limited due to the challenges of studying the complex relationship between exposure at work and outside work and health. We define the working life exposome as all occupational and related nonoccupational exposures. The latter includes nonoccupational exposures that may be directly or indirectly influenced by or interact with the working life of the individual in their relation to health. The Exposome Project for Health and Occupational Research aims to advance knowledge on the complex working life exposures in relation to disease beyond the single high exposure-single health outcome paradigm, mapping and relating interrelated exposures to inherent biological pathways, key body functions, and health. This will be achieved by combining (1) large-scale harmonization and pooling of existing European cohorts systematically looking at multiple exposures and diseases, with (2) the collection of new high-resolution external and internal exposure data. Methods and tools to characterize the working life exposome will be developed and applied, including sensors, wearables, a harmonized job exposure matrix (EuroJEM), noninvasive biomonitoring, omics, data mining, and (bio)statistics. The toolbox of developed methods and knowledge will be made available to policy makers, occupational health practitioners, and scientists. Advanced knowledge on working life exposures in relation to NCDs will serve as a basis for evidence-based and cost-effective preventive policies and actions. The toolbox will also enable future scientists to further expand the working life exposome knowledge base.

3.
Sci Total Environ ; 829: 154447, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35283125

RESUMO

BACKGROUND/OBJECTIVE: Urban greenspace may have a beneficial or adverse effect on respiratory health. Our objective was to perform an exploratory systematic review to synthesise the evidence and identify the potential causal pathways relating urban greenspace and respiratory health. METHODS: We followed PRISMA guidelines on systematic reviews and searched five databases for eligible studies during 2000-2021. We incorporated a broad range of urban greenspace and respiratory health search terms, including both observational and experimental studies. Screening, data extraction, and risk of bias, assessed using the Navigation Guide criteria, were performed independently by two authors. We performed a narrative synthesis and discuss suggested pathways to respiratory health. RESULTS: We identified 108 eligible papers (n = 104 observational, n = 4 experimental). The most common greenspace indicators were the overall greenery or vegetation (also known as greenness), green land use/land cover of physical area classes (e.g., parks, forests), and tree canopy cover. A wide range of respiratory health indicators were studied, with asthma prevalence being the most common. Two thirds (n = 195) of the associations in these studies were positive (i.e., beneficial) with health, with 31% (n = 91) statistically significant; only 9% (n = 25) of reported associations were negative (i.e., adverse) with health and statistically significant. The most consistent positive evidence was apparent for respiratory mortality. There were n = 35 (32%) 'probably low' and n = 73 (68%) 'probably high' overall ratings of bias. Hypothesised causal pathways for health benefits included lower air pollution, more physically active populations, and exposure to microbial diversity; suggested mechanisms with poorer health included exposure to pollen and other aeroallergens. CONCLUSION: Many studies showed positive association between urban greenspace and respiratory health, especially lower respiratory mortality; this is suggestive, but not conclusive, of causal effects. Results underscore the importance of contextual factors, greenspace metric employed, and the potential bias of subtle selection factors, which should be explored further.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34948743

RESUMO

The Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019-2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, but SMIs showed willingness to use it in the future as part of their research and development activities. Conclusions: The sustainable development of hydrocarbon exploitation and processing prospects for Cyprus involves the VEC. Continuous and active collaboration and mutual feedback among all stakeholders involved with the VEC is essential, as this may allow future environmental and occupational health initiatives to be formalized.


Assuntos
Saúde Pública , Participação dos Interessados , Chipre , Exposição Ambiental , Hidrocarbonetos
5.
Atmos Chem Phys ; 21(7): 5549-5573, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462630

RESUMO

Epidemiological studies have consistently linked exposure to PM2.5 with adverse health effects. The oxidative potential (OP) of aerosol particles has been widely suggested as a measure of their potential toxicity. Several acellular chemical assays are now readily employed to measure OP; however, uncertainty remains regarding the atmospheric conditions and specific chemical components of PM2.5 that drive OP. A limited number of studies have simultaneously utilised multiple OP assays with a wide range of concurrent measurements and investigated the seasonality of PM2.5 OP. In this work, filter samples were collected in winter 2016 and summer 2017 during the atmospheric pollution and human health in a Chinese megacity campaign (APHH-Beijing), and PM2.5 OP was analysed using four acellular methods: ascorbic acid (AA), dithiothreitol (DTT), 2,7-dichlorofluorescin/hydrogen peroxidase (DCFH) and electron paramagnetic resonance spectroscopy (EPR). Each assay reflects different oxidising properties of PM2.5, including particle-bound reactive oxygen species (DCFH), superoxide radical production (EPR) and catalytic redox chemistry (DTT/AA), and a combination of these four assays provided a detailed overall picture of the oxidising properties of PM2.5 at a central site in Beijing. Positive correlations of OP (normalised per volume of air) of all four assays with overall PM2.5 mass were observed, with stronger correlations in winter compared to summer. In contrast, when OP assay values were normalised for particle mass, days with higher PM2.5 mass concentrations (µgm-3) were found to have lower mass-normalised OP values as measured by AA and DTT. This finding supports that total PM2.5 mass concentrations alone may not always be the best indicator for particle toxicity. Univariate analysis of OP values and an extensive range of additional measurements, 107 in total, including PM2.5 composition, gas-phase composition and meteorological data, provided detailed insight into the chemical components and atmospheric processes that determine PM2.5 OP variability. Multivariate statistical analyses highlighted associations of OP assay responses with varying chemical components in PM2.5 for both mass- and volume-normalised data. AA and DTT assays were well predicted by a small set of measurements in multiple linear regression (MLR) models and indicated fossil fuel combustion, vehicle emissions and biogenic secondary organic aerosol (SOA) as influential particle sources in the assay response. Mass MLR models of OP associated with compositional source profiles predicted OP almost as well as volume MLR models, illustrating the influence of mass composition on both particle-level OP and total volume OP. Univariate and multivariate analysis showed that different assays cover different chemical spaces, and through comparison of mass- and volume-normalised data we demonstrate that mass-normalised OP provides a more nuanced picture of compositional drivers and sources of OP compared to volume-normalised analysis. This study constitutes one of the most extensive and comprehensive composition datasets currently available and provides a unique opportunity to explore chemical variations in PM2.5 and how they affect both PM2.5 OP and the concentrations of particle-bound reactive oxygen species.

6.
Ann Work Expo Health ; 65(9): 1011-1028, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34219141

RESUMO

INTRODUCTION: Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry. METHOD: A scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005-end of 2019. RESULTS: In total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector. DISCUSSION AND CONCLUSION: New exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.


Assuntos
Expossoma , Exposição Ocupacional , Humanos , Indústria de Petróleo e Gás , Medição de Risco , Tecnologia
7.
Ann Work Expo Health ; 65(8): 879-892, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329379

RESUMO

OBJECTIVES: This systematic review aimed to evaluate the evidence for air and surface contamination of workplace environments with SARS-CoV-2 RNA and the quality of the methods used to identify actions necessary to improve the quality of the data. METHODS: We searched Web of Science and Google Scholar until 24 December 2020 for relevant articles and extracted data on methodology and results. RESULTS: The vast majority of data come from healthcare settings, with typically around 6% of samples having detectable concentrations of SARS-CoV-2 RNA and almost none of the samples collected had viable virus. There were a wide variety of methods used to measure airborne virus, although surface sampling was generally undertaken using nylon flocked swabs. Overall, the quality of the measurements was poor. Only a small number of studies reported the airborne concentration of SARS-CoV-2 virus RNA, mostly just reporting the detectable concentration values without reference to the detection limit. Imputing the geometric mean air concentration assuming the limit of detection was the lowest reported value, suggests typical concentrations in healthcare settings may be around 0.01 SARS-CoV-2 virus RNA copies m-3. Data on surface virus loading per unit area were mostly unavailable. CONCLUSIONS: The reliability of the reported data is uncertain. The methods used for measuring SARS-CoV-2 and other respiratory viruses in work environments should be standardized to facilitate more consistent interpretation of contamination and to help reliably estimate worker exposure.


Assuntos
COVID-19 , Exposição Ocupacional , Humanos , RNA Viral , Reprodutibilidade dos Testes , SARS-CoV-2 , Local de Trabalho
8.
BMC Public Health ; 21(1): 282, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541323

RESUMO

BACKGROUND: Greenspace has been associated with health benefits in many contexts. An important pathway may be through outdoor physical activity. We use a novel approach to examine the link between greenspace microenvironments and outdoor physical activity levels in the HEALS study conducted in Edinburgh (UK), the Netherlands, and Athens and Thessaloniki (Greece). METHODS: Using physical activity tracker recordings, 118 HEALS participants with young children were classified with regard to daily minutes of moderate to vigorous physical activity (MVPA); 60 were classified with regard to the metabolic equivalent task (MET)-minutes for each of the 1014 active trips they made. Greenspace indicators were generated for Normalised Difference Vegetation Index (NDVI), tree cover density (TCD), and green land use (GLU). We employed linear mixed-effects models to analyse (1) daily MVPA in relation to greenspace within 300 m and 1000 m of residential addresses and (2) trip MET-minutes in relation to average greenspace within a 50 m buffer of walking/cycling routes. Models were adjusted for activity, walkability, bluespace, age, sex, car ownership, dog ownership, season, weekday/weekend day, and local meteorology. RESULTS: There was no clear association between MVPA-minutes and any residential greenspace measure. For example, in fully adjusted models, a 10 percentage point increase in NDVI within 300 m of home was associated with a daily increase of 1.14 (95% CI - 0.41 to 2.70) minutes of MVPA. However, we did find evidence to indicate greenspace markers were positively linked to intensity and duration of activity: in fully adjusted models, 10 percentage point increases in trip NDVI, TCD, and GLU were associated with increases of 10.4 (95% CI: 4.43 to 16.4), 10.6 (95% CI: 4.96 to 16.3), and 3.36 (95% CI: 0.00 to 6.72) MET-minutes, respectively. The magnitude of associations with greenspace tended to be greater for cycling. CONCLUSIONS: More strenuous or longer walking and cycling trips occurred in environments with more greenspace, but levels of residential greenspace did not have a clear link with outdoor MVPA. To build on our research, we suggest future work examine larger, more diverse populations and investigate the influence of greenspace for trip purpose and route preference.


Assuntos
Parques Recreativos , Características de Residência , Animais , Pré-Escolar , Cães , Europa (Continente) , Grécia , Humanos , Países Baixos
9.
J Expo Sci Environ Epidemiol ; 31(4): 672-682, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33603098

RESUMO

BACKGROUND: There is a growing evidence that exposure to ambient particulate air pollution during pregnancy is associated with adverse birth outcomes, including reduced birth weight (BW). The objective of this study was to quantify associations between BW and exposure to particulate matter (PM) and biomass burning during pregnancy in Thailand. METHODS: We collected hourly ambient air pollutant data from ground-based monitors (PM with diameter of <10 µm [PM10], Ozone [O3], and nitrogen dioxide [NO2]), biomass burning from satellite remote sensing data, and individual birth weight data during 2015-2018. We performed a semi-ecological analysis to evaluate the association between mean trimester exposure to air pollutants and biomass burning with BW and low-birth weight (LBW) (<2500 g), adjusting for gestation age, sex, previous pregnancies, mother's age, heat index, season, year, gaseous pollutant concentrations, and province. We examined potential effect modification of PM10 and biomass burning exposures by sex. RESULTS: There were 83,931 eligible births with a mean pregnancy PM10 exposure of 39.7 µg/m3 (standard deviation [SD] = 7.7). The entire pregnancy exposure was associated with reduced BW both for PM10 (-6.81 g per 10 µg/m3 increase in PM10 [95% CI = -12.52 to -1.10]) and biomass burning (-6.34 g per 1 SD increase in fires/km2 [95% CI = -11.35 to -1.34]) only after adjustment for NO2. In contrast with these findings, a reduced odds ratio (OR) of LBW was associated with PM10 exposure only in trimesters one and two, with no relationship across the entire pregnancy period. Associations with biomass burning were limited to increased ORs of LBW with exposure in trimester three, but only for male births. CONCLUSION: Based on our results, we encourage further investigation of air pollution, biomass burning and BW in Thailand and other low-income and middle-income countries.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomassa , Peso ao Nascer , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Tailândia
10.
J Hazard Mater ; 413: 125341, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596527

RESUMO

Short-term exposure to fine particulate matter (PM2.5) increases thrombotic risk particularly in obese individuals, but the underlying mechanisms remain unclear. This study aims to compare the effects of PM2.5 on inflammation and platelet activation in obese versus normal-weight adults, and investigate potential causal pathways. We conducted a panel study measuring blood markers in 44 obese and 53 normal-weight adults on 3 separate occasions in 2017-2018. Associations between PM2.5/black carbon (BC) and biomarkers were estimated using mixed-effect models. An interaction analysis compared PM2.5/BC-related effects between subgroups. Biomarker combinations and mediation analysis were performed to elucidate the biological pathways. There was a significant "low-high-low" trend of PM2.5 levels across the 3 study periods. Increases in pro-inflammatory cytokines and changes of platelet activation and aggregation markers were associated with PM2.5/BC in obese subgroup only. Among obese subjects, the combination of pro-inflammatory cytokines and that of platelet markers increased 26.8% (95% CI: 16.0%, 37.9%) and 14.7% (95% CI: 1.9%, 27.0%) per IQR increase in PM2.5 over 5-day and 7-day averages. Inflammation mediated 24.5% of the pathways through which PM2.5 promoted platelet activation. This study suggested obese people are susceptible to pro-thrombotic impacts of PM2.5 exposures. PM2.5 may aggravate thrombosis through obesity-related inflammation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Trombose , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biomarcadores , Exposição Ambiental/análise , Humanos , Inflamação/induzido quimicamente , Obesidade , Material Particulado/análise , Material Particulado/toxicidade , Ativação Plaquetária
11.
Environ Int ; 146: 106246, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33181410

RESUMO

The COVID-19 pandemic placed public health measures against infectious diseases at the core of global health challenges, especially in cities where more than half of the global population lives. SARS-CoV-2 is an exposure agent recently added to the network of exposures that comprise the human exposome, i.e. the totality of all environmental exposures throughout one's lifetime. At the same time, the application of measures to tackle SARS-CoV-2 transmission leads to changes in the exposome components and in characteristics of urban environments that define the urban exposome, a complementary concept to the human exposome, which focuses on monitoring urban health. This work highlights the use of a comprehensive systems-based approach of the exposome for better capturing the population-wide and individual-level variability in SARS-CoV-2 spread and its associated urban and individual exposures towards improved guidance and response. Population characteristics, the built environment and spatiotemporal features of city infrastructure, as well as individual characteristics/parameters, socioeconomic status, occupation and biological susceptibility need to be simultaneously considered when deploying non-pharmacological public health measures. Integrating individual and population characteristics, as well as urban-specific parameters is the prerequisite in urban exposome studies. Applications of the exposome approach in cities/towns could facilitate assessment of health disparities and better identification of vulnerable populations, as framed by multiple environmental, urban design and planning co-exposures. Exposome-based applications in epidemics control and response include the implementation of exposomic tools that have been quite mature in non-communicable disease research, ranging from biomonitoring and surveillance to sensors and modeling. Therefore, the exposome can be a novel tool in risk assessment and management during epidemics and other major public health events. This is a unique opportunity for the research community to exploit the exposome concept and its tools in upgrading and further developing site-specific public health measures in cities.


Assuntos
COVID-19 , Doenças Transmissíveis , Cidades , Exposição Ambiental/análise , Expossoma , Humanos , Pandemias , Saúde Pública , SARS-CoV-2 , Saúde da População Urbana
12.
J Pediatr Adolesc Gynecol ; 34(2): 226-227, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33242593

RESUMO

BACKGROUND: Several states have deemed abortions as nonessential services, effectively calling for a halt to abortion care during the COVID-19 pandemic. In response, women might elect for self-managed abortions by obtaining abortion medications online. CASE: A 15-year-old girl presented with abdominal cramping and vaginal discharge after taking misoprostol obtained from an online retailer for a self-managed abortion in her second trimester during the COVID-19 pandemic. Her exam showed products of conception protruding from the vagina. The patient was emergently evaluated for an incomplete and possible septic abortion and underwent a dilation and evacuation procedure.


Assuntos
Aborto Induzido/métodos , COVID-19/epidemiologia , Misoprostol/farmacologia , Pandemias , Complicações Infecciosas na Gravidez/epidemiologia , Segundo Trimestre da Gravidez , Adolescente , Feminino , Humanos , Ocitócicos/farmacologia , Gravidez , SARS-CoV-2
13.
Artigo em Inglês | MEDLINE | ID: mdl-33271938

RESUMO

In high-income countries, and increasingly in lower- and middle-income countries, chronic non-communicable diseases (NCDs) have become the primary health burden. It is possible that in utero exposure to environmental pollutants such as particulate matter (PM) may have an impact on health later in life, including the development of NCDs. Due to a lack of data on foetal growth, birth weight is often used in epidemiologic studies as a proxy to assess impacts on foetal development and adverse birth outcomes since it is commonly recorded at birth. There are no research studies with humans that directly link PM exposure in utero to birth weight (BW) and subsequently, the effects of lower BW on health outcomes in old age. It is, however, plausible that such associations exist, and it is thus important to assess the potential public health impacts of PM across the life course, and it is plausible to use birth weight as an indicator of risk. We therefore split this narrative review into two parts. In the first part, we evaluated the strength of the evidence on the impact of PM exposure during the entire pregnancy on birth weight outcomes in ten meta-analyses. In the second part, we reviewed the literature linking lower birth weight to childhood and adult chronic cardiovascular disease to explore the potential implications of PM exposure in utero on health later in life. Within the reviewed meta-studies on birth weight, there is sufficient evidence that PM pollution is associated with lower birth weight, i.e., the majority of meta-studies found statistically significant reductions in birth weight. From the second part of the review, it is evident that there is good evidence of associations between lower birth weight and subsequent cardiovascular disease risk. It is thus plausible that in utero exposure to PM is associated with lower birth weight and persisting biological changes that could be associated with adverse health effects in adulthood. Based on the reviewed evidence, however, the magnitude of later life cardiovascular health impacts from in utero exposure and its impact on BW are likely to be small compared to health effects from exposure to particulate air pollution over a whole lifetime.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Peso ao Nascer , Exposição Materna/estatística & dados numéricos , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Feminino , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Material Particulado/análise , Material Particulado/toxicidade , Gravidez
14.
Sci Total Environ ; 737: 139801, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783824

RESUMO

This study is part of the "Air Polluion Impacts on Cardiopulmonary disease in Beijing: an integrated study of Exposure Science, Toxicologenomics & Environmental Epidemiology (APIC-ESTEE)" project under the UK-China joint research programme "Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China)". The aim is to capture the spatio-temporal variability in people's exposure to fine particles (PM2.5) and black carbon (BC) air pollution in Beijing, China. A total of 120 students were recruited for a panel study from ten universities in Haidian District in northwestern Beijing from December 2017 to June 2018. Real-time personal concentrations of PM2.5 and BC were measured over a 24-h period with two research-grade portable personal exposure monitors. Personal microenvironments (MEs) were determined by applying an algorithm to the handheld GPS unit data. On average, the participants spent the most time indoors (79% in Residence and 16% in Workplace), and much less time travelling by Walking, Cycling, Bus and Metro. Similar patterns were observed across participant gender and body-mass index classifications. The participants were exposed to 33.8 ± 27.8 µg m-3 PM2.5 and to 1.9 ± 1.2 µg m-3 BC over the 24-h monitoring period, on average 24.3 µg m-3 (42%) and 0.8 µg m-3 (28%) lower, respectively, than the concurrent fixed-site ambient measurements. Relative differences between personal and ambient BC concentrations showed greater variability across the MEs, highlighting significant contributions from Dining and travelling by Bus, which involve potential combustion of fuels. This study demonstrates the potential value of personal exposure monitoring in investigating air pollution related health effects, and in evaluating the effectiveness of pollution control and intervention measures.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , Carbono , China , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise
15.
Environ Res ; 190: 109907, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32758550

RESUMO

BACKGROUND: Ozone is a highly oxidative gaseous pollutant associated with adverse health outcomes, but markers for internal exposure to ambient ozone are not well-established. METHODS: We aimed to evaluate the feasibility and suitability of the markers in oral microbiome for ambient ozone exposure. Between March and May in 2018, 97 healthy adults were examined on 2 or 3 occasions for oral swab sampling. Hourly concentrations of ambient ozone 1-7 days preceding sampling were collected. Mixed-effect models were fitted to examine the associations between ambient ozone and the diversity and taxon abundances of oral microbiome. Receiver operating characteristic (ROC) curves estimated the accuracies of markers to delineate between samples exposed to different concentrations of ambient ozone. The associations between the makers and lung function were further examined by linear mixed effect models. RESULTS: The averages of daily mean concentrations of ambient ozone (O3-daily), maximum 8-h means (O3-8hmax) and 1-h maximums (O3-1hmax) were respectively 72 µg/m³, 123 µg/m³ and 144 µg/m³. O3-daily was positively associated with α-diversity of oral microbiome, but the exposure-response curves only yielded positive associations in the range of O3-daily from 60 µg/m³ to 75 µg/m³. Results of O3-8hmax and O3-1hmax were consistent with these of O3-daily. With an interquartile range increase in O3-daily at lag04, the abundance of Proteobacteria decreased by 3.1% (95% CI: -4.0%, -2.2%) and Firmicutes increased by 3.3% (95% CI: 2.3%, 4.3%), whilst the Proteobacteria:Firmicutes ratio (P/F) decreased by 0.9 (95% CI: -1.5, -0.4). The areas under ROC curves for Proteobacteria, Firmicutes and P/F were 0.8535, 0.7569 and 0.8929, respectively. Proteobacteria and P/F were associated with forced expiratory volume in the first second and fractional exhaled nitric oxide significantly. CONCLUSION: Ambient ozone disturbs oral microbial homeostasis. Proteobacteria, Firmicutes and their ratio may be potential markers for short-term ambient ozone exposure, and indicators of airway inflammation or lung function decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Humanos , Boca/química , Ozônio/análise , Ozônio/toxicidade , Testes de Função Respiratória
18.
Ann Work Expo Health ; 64(6): 569-585, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32313948

RESUMO

Diisocyanates are a group of chemicals that are widely used in occupational settings. They are known to induce various health effects, including skin- and respiratory tract sensitization resulting in allergic dermatitis and asthma. Exposure to diisocyanates has been studied in the past decades by using different types of biomonitoring markers and matrices. The aim of this review as part of the HBM4EU project was to assess: (i) which biomarkers and matrices have been used for biomonitoring diisocyanates and what are their strengths and limitations; (ii) what are (current) biomonitoring levels of the major diisocyanates (and metabolites) in workers; and (iii) to characterize potential research gaps. For this purpose we conducted a systematic literature search for the time period 2000-end 2018, thereby focussing on three types of diisocyanates which account for the vast majority of the total isocyanate market volume: hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), and 4,4'-methylenediphenyl diisocyanate (MDI). A total of 28 publications were identified which fulfilled the review inclusion criteria. The majority of these studies (93%) investigated the corresponding diamines in either urine or plasma, but adducts have also been investigated by several research groups. Studies on HDI were mostly in the motor vehicle repair industry [with urinary hexamethylene diamine result ranging from 0.03 to 146.5 µmol mol-1 creatinine]. For TDI, there is mostly data on foam production [results for urinary toluene diamine ranging from ~0.01 to 97 µmol mol-1 creatinine] whereas the available MDI data are mainly from the polyurethane industry (results for methylenediphenyl diamine range from 0.01 to 32.7 µmol mol-1 creatinine). About half of the studies published were prior to 2010 hence might not reflect current workplace exposure. There is large variability within and between studies and across sectors which could be potentially explained by several factors including worker or workplace variability, short half-lives of biomarkers, and differences in sampling strategies and analytical techniques. We identified several research gaps which could further be taken into account when studying diisocyanates biomonitoring levels: (i) the development of specific biomarkers is promising (e.g. to study oligomers of HDI which have been largely neglected to date) but needs more research before they can be widely applied, (ii) since analytical methods differ between studies a more uniform approach would make comparisons between studies easier, and (iii) dermal absorption seems a possible exposure route and needs to be further investigated. The use of MDI, TDI, and HDI has been recently proposed to be restricted in the European Union unless specific conditions for workers' training and risk management measures apply. This review has highlighted the need for a harmonized approach to establishing a baseline against which the success of the restriction can be evaluated.


Assuntos
Exposição Ocupacional , Monitoramento Biológico , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poliuretanos , Tolueno 2,4-Di-Isocianato/efeitos adversos , Local de Trabalho
20.
Environ Res ; 180: 108850, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670081

RESUMO

BACKGROUND/AIM: The exposome includes urban greenspace, which may affect health via a complex set of pathways, including reducing exposure to particulate matter (PM) and noise. We assessed these pathways using indoor exposure monitoring data from the HEALS study in four European urban areas (Edinburgh, UK; Utrecht, Netherlands; Athens and Thessaloniki, Greece). METHODS: We quantified three metrics of residential greenspace at 50 m and 100 m buffers: Normalised Difference Vegetation Index (NDVI), annual tree cover density, and surrounding green land use. NDVI values were generated for both summer and the season during which the monitoring took place. Indoor PM2.5 and noise levels were measured by Dylos and Netatmo sensors, respectively, and subjective noise annoyance was collected by questionnaire on an 11-point scale. We used random-effects generalised least squares regression models to assess associations between greenspace and indoor PM2.5 and noise, and an ordinal logistic regression to model the relationship between greenspace and road noise annoyance. RESULTS: We identified a significant inverse relationship between summer NDVI and indoor PM2.5 (-1.27 µg/m3 per 0.1 unit increase [95% CI -2.38 to -0.15]) using a 100 m residential buffer. Reduced (i.e., <1.0) odds ratios (OR) of road noise annoyance were associated with increasing summer (OR = 0.55 [0.31 to 0.98]) and season-specific (OR = 0.55 [0.32 to 0.94]) NDVI levels, and tree cover density (OR = 0.54 [0.31 to 0.93] per 10 percentage point increase), also at a 100 m buffer. In contrast to these findings, we did not identify any significant associations between greenspace and indoor noise in fully adjusted models. CONCLUSIONS: We identified reduced indoor levels of PM2.5 and noise annoyance, but not overall noise, with increasing outdoor levels of certain greenspace indicators. To corroborate our findings, future research should examine the effect of enhanced temporal resolution of greenspace metrics during different seasons, characterise the configuration and composition of green areas, and explore mechanisms through mediation modelling.


Assuntos
Poluição do Ar em Ambientes Fechados , Exposição Ambiental/estatística & dados numéricos , Ruído , Material Particulado , Poluentes Atmosféricos , Grécia , Países Baixos , Razão de Chances
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...