Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(35): 14879-14899, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533177

RESUMO

Colorectal cancer (CRC) has a poor prognosis and urgently needs better therapeutic approaches. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) based photodynamic therapy (PDT) is already used in the clinic for several cancers but not yet well investigated for CRC. Currently, systemic administration of ALA offers a limited degree of tumour selectivity, except for intracranial tumours, limiting its wider use in the clinic. The combination of effective ALA-PDT and chemotherapy may provide a promising alternative approach for CRC treatment. Herein, theranostic Ag2S quantum dots (AS-2MPA) optically trackable in near-infrared (NIR), conjugated with endothelial growth factor receptor (EGFR) targeting Cetuximab (Cet) and loaded with ALA for PDT monotherapy or ALA/5-fluorouracil (5FU) for the combination therapy are proposed for enhanced treatment of EGFR(+) CRC. AS-2MPA-Cet exhibited excellent targeting of the high EGFR expressing cells and showed a strong intracellular signal for NIR optical detection in a comparative study performed on SW480, HCT116, and HT29 cells, which exhibit high, medium and low EGFR expression, respectively. Targeting provided enhanced uptake of the ALA loaded nanoparticles by strong EGFR expressing cells and formation of higher levels of PpIX. Cells also differ in their efficiency to convert ALA to PpIX, and SW480 was the best, followed by HT29, while HCT116 was determined as unsuitable for ALA-PDT. The therapeutic efficacy was evaluated in 2D cell cultures and 3D spheroids of SW480 and HT29 cells using AS-2MPA with either electrostatically loaded, hydrazone or amide linked ALA to achieve different levels of pH or enzyme sensitive release. Most effective phototoxicity was observed in SW480 cells using AS-2MPA-ALA-electrostatic-Cet due to enhanced uptake of the particles, fast ALA release and effective ALA-to-PpIX conversion. Targeted delivery reduced the effective ALA concentration significantly which was further reduced with codelivery of 5FU. Delivery of ALA via covalent linkages was also effective for PDT, but required a longer incubation time for the release of ALA in therapeutic doses. Phototoxicity was correlated with high levels of reactive oxygen species (ROS) and apoptotic/necrotic cell death. Hence, both AS-2MPA-ALA-Cet based PDT and AS-2MPA-ALA-Cet-5FU based chemo/PDT combination therapy coupled with strong NIR tracking of the nanoparticles demonstrate an exceptional therapeutic effect on CRC cells and excellent potential for synergistic multistage tumour targeting therapy.


Assuntos
Neoplasias Colorretais , Fotoquimioterapia , Pontos Quânticos , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imagem Óptica , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas
2.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924238

RESUMO

Pancreatic cancer is a unique cancer in that up to 90% of its tumour mass is composed of a hypovascular and fibrotic stroma. This makes it extremely difficult for chemotherapies to be delivered into the core of the cancer mass. We tissue-engineered a biomimetic 3D pancreatic cancer ("tumouroid") model comprised of a central artificial cancer mass (ACM), containing MIA Paca-2 cells, surrounded by a fibrotic stromal compartment. This stromal compartment had a higher concentration of collagen type I, fibronectin, laminin, and hyaluronic acid (HA) than the ACM. The incorporation of HA was validated with alcian blue staining. Response to paclitaxel was determined in 2D MIA Paca-2 cell cultures, the ACMs alone, and in simple and complex tumouroids, in order to demonstrate drug sensitivity within pancreatic tumouroids of increasing complexity. The results showed that MIA Paca-2 cells grew into the complex stroma and invaded as cell clusters with a maximum distance of 363.7 µm by day 21. In terms of drug response, the IC50 for paclitaxel for MIA Paca-2 cells increased from 0.819 nM in 2D to 3.02 nM in ACMs and to 5.87 nM and 3.803 nM in simple and complex tumouroids respectively, indicating that drug penetration may be significantly reduced in the latter. The results demonstrate the need for biomimetic models during initial drug testing and evaluation.


Assuntos
Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Engenharia Tecidual , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Imunofluorescência , Humanos , Imuno-Histoquímica , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Esferoides Celulares , Células Estromais/patologia , Células Tumorais Cultivadas
3.
J Cancer Res Clin Oncol ; 146(11): 2861-2870, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32772171

RESUMO

PURPOSE: IGF-1Ec is an isoform of Insulin-like growth factor 1 (IGF-1) and has recently been identified to be overexpressed in cancers including prostate and neuroendocrine tumours. The aim of this paper is to investigate the expression of IGF-1Ec in colorectal cancer and polyps compared to normal colon tissues and its association with recurrent disease using semi-quantitative immunohistochemistry. METHODS: Immunohistochemistry for IGF-1Ec expression was performed for colorectal cancer, colorectal polyps and normal colonic tissues. The quantification of IGF-1Ec expression was performed with the use of Image J software and the IHC profiler plugin. Following ethics approval from the National Research Ethics Service (Reference 11/LO/1521), clinical information including recurrent disease on follow-up was collected for patients with colorectal cancer. RESULTS: Immunohistochemistry was performed in 16 patients with colorectal cancer and 11 patients with colonic polyps and compared to normal colon tissues and prostate adenocarcinoma (positive control) tissues. Significantly increased expression of IGF-1Ec was demonstrated in colorectal cancer (p < 0.001) and colorectal polyps (p < 0.05) compared to normal colonic tissues. Colonic adenomas with high-grade dysplasia had significantly higher expression of IGF-1Ec compared to low-grade dysplastic adenomas (p < 0.001). Colorectal cancers without lymph node metastases at the time of presentation had significantly higher IGF-1Ec expression compared to lymph node-positive disease (p < 0.05). No correlation with recurrent disease was identified with IGF-1Ec expression. CONCLUSION: IGF-1Ec is significantly overexpressed in colorectal cancer and polyps compared to normal colon tissues offering a potential target to improve colonoscopic identification of colorectal polyps and cancer and intraoperative identification of colorectal tumours.


Assuntos
Pólipos Adenomatosos/diagnóstico , Pólipos do Colo/diagnóstico , Neoplasias Colorretais/diagnóstico , Fator de Crescimento Insulin-Like I/metabolismo , Pólipos Adenomatosos/metabolismo , Pólipos Adenomatosos/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Pólipos do Colo/metabolismo , Pólipos do Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Fator de Crescimento Insulin-Like I/análise , Masculino
4.
Br J Cancer ; 123(7): 1178-1190, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641866

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are highly differentiated and heterogeneous cancer-stromal cells that promote tumour growth, angiogenesis and matrix remodelling. METHODS: We utilised an adapted version of a previously developed 3D in vitro model of colorectal cancer, composed of a cancer mass and the surrounding stromal compartment. We compared cancer invasion with an acellular stromal surround, a "healthy" or normal cellular stroma and a cancerous stroma. For the cancerous stroma, we incorporated six patient-derived CAF samples to study their differential effects on cancer growth, vascular network formation and remodelling. RESULTS: CAFs enhanced the distance and surface area of the invasive cancer mass whilst inhibiting vascular-like network formation. These processes correlated with the upregulation of hepatocyte growth factor (HGF), metallopeptidase inhibitor 1 (TIMP1) and fibulin-5 (FBLN5). Vascular remodelling of previously formed endothelial structures occurred through the disruption of complex networks, and was associated with the upregulation of vascular endothelial growth factor (VEGFA) and downregulation in vascular endothelial cadherin (VE-Cadherin). CONCLUSIONS: These results support, within a biomimetic 3D, in vitro framework, the direct role of CAFs in promoting cancer invasion, and their key function in driving vasculogenesis and angiogenesis.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias Colorretais/patologia , Células Estromais/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/irrigação sanguínea , Progressão da Doença , Humanos , Invasividade Neoplásica , Fator A de Crescimento do Endotélio Vascular/análise , Remodelação Vascular
5.
Sci Rep ; 10(1): 12020, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694700

RESUMO

3D laboratory models of cancer are designed to recapitulate the biochemical and biophysical characteristics of the tumour microenvironment and aim to enable studies of cancer, and new therapeutic modalities, in a physiologically-relevant manner. We have developed an in vitro 3D model comprising a central high-density mass of breast cancer cells surrounded by collagen type-1 and we incorporated fluid flow and pressure. We noted significant changes in cancer cell behaviour using this system. MDA-MB231 and SKBR3 breast cancer cells grown in 3D downregulated the proliferative marker Ki67 (P < 0.05) and exhibited decreased response to the chemotherapeutic agent doxorubicin (DOX) (P < 0.01). Mesenchymal markers snail and MMP14 were upregulated in cancer cells maintained in 3D (P < 0.001), cadherin-11 was downregulated (P < 0.001) and HER2 increased (P < 0.05). Cells maintained in 3D under fluid flow exhibited a further reduction in response to DOX (P < 0.05); HER2 and Ki67 levels were also attenuated. Fluid flow and pressure was associated with reduced cell viability and decreased expression levels of vimentin. In summary, aggressive cancer cell behaviour and reduced drug responsiveness was observed when breast cancer cells were maintained in 3D under fluid flow and pressure. These observations are relevant for future developments of 3D in vitro cancer models and organ-on-a-chip initiatives.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fenótipo , Neoplasias de Mama Triplo Negativas/patologia , Caderinas/análise , Caderinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Antígeno Ki-67/análise , Antígeno Ki-67/metabolismo , Metaloproteinase 14 da Matriz/análise , Metaloproteinase 14 da Matriz/metabolismo , Modelos Biológicos , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Fatores de Transcrição da Família Snail/análise , Fatores de Transcrição da Família Snail/metabolismo , Microambiente Tumoral , Vimentina/análise , Vimentina/metabolismo
6.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668592

RESUMO

Hepatocellular Carcinoma (HCC) is increasing in incidence worldwide and requires new approaches to therapy. The combination of anti-angiogenic drug therapy and radiotherapy is one promising new approach. The anti-angiogenic drug vandetanib is a tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) and RET proto-oncogene with radio-enhancement potential. To explore the benefit of combined vandetanib and radiotherapy treatment for HCC, we studied outcomes following combined treatment in pre-clinical models. METHODS: Vandetanib and radiation treatment were combined in HCC cell lines grown in vitro and in vivo. In addition to 2D migration and clonogenic assays, the combination was studied in 3D spheroids and a syngeneic mouse model of HCC. RESULTS: Vandetanib IC 50 s were measured in 20 cell lines and the drug was found to significantly enhance radiation cell kill and to inhibit both cell migration and invasion in vitro. In vivo, combination therapy significantly reduced cancer growth and improved overall survival, an effect that persisted for the duration of vandetanib treatment. CONCLUSION: In 2D and 3D studies in vitro and in a syngeneic model in vivo, the combination of vandetanib plus radiotherapy was more efficacious than either treatment alone. This new combination therapy for HCC merits evaluation in clinical trials.

7.
Acta Biomater ; 113: 177-195, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663664

RESUMO

Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This in vitro study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. STATEMENT OF SIGNIFICANCE: Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration.


Assuntos
Colágeno , Elastômeros , Engenharia Tecidual , Tecidos Suporte , Humanos , Impressão Tridimensional , Sistema Respiratório
8.
J Tissue Eng ; 11: 2041731420920597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489578

RESUMO

Pazopanib is a tyrosine kinase inhibitor used to treat renal cell carcinoma. Few in vitro studies investigate its effects towards cancer cells or endothelial cells in the presence of cancer. We tested the effect of Pazopanib on renal cell carcinoma cells (CAKI-2,786-O) in two-dimensional and three-dimensional tumouroids made of dense extracellular matrix, treated in normoxia and hypoxia. Finally, we engineered complex tumouroids with a stromal compartment containing fibroblasts and endothelial cells. Simple CAKI-2 tumouroids were more resistant to Pazopanib than 786-O tumouroids. Under hypoxia, while the more 'resistant' CAKI-2 tumouroids showed no decrease in viability, 786-O tumouroids required higher Pazopanib concentrations to induce cell death. In complex tumouroids, Pazopanib exposure led to a reduction in the overall cell viability (p < 0.0001), disruption of endothelial networks and direct killing of renal cell carcinoma cells. We report a biomimetic multicellular tumouroid for drug testing, suitable for agents whose primary target is not confined to cancer cells.

9.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366058

RESUMO

In this study we explored the efficacy of combining low dose photodynamic therapy using a porphyrin photosensitiser and dactinomycin, a commonly used chemotherapeutic agent. The studies were carried out on compressed collagen 3D constructs of two human ovarian cancer cell lines (SKOV3 and HEY) versus their monolayer counterparts. An amphiphilc photosensitiser was employed, disulfonated tetraphenylporphine, which is not a substrate for ABC efflux transporters that can mediate drug resistance. The combination treatment was shown to be effective in both monolayer and 3D constructs of both cell lines, causing a significant and synergistic reduction in cell viability. Compared to dactinomycin alone or PDT alone, higher cell kill was found using 2D monolayer culture vs. 3D culture for the same doses. In 3D culture, the combination therapy resulted in 10 and 22 times higher cell kill in SKOV3 and HEY cells at the highest light dose compared to dactinomycin monotherapy, and 2.2 and 5.5 times higher cell kill than PDT alone. The combination of low dose PDT and dactinomycin appears to be a promising way to repurpose dactinomycin and widen its therapeutic applications.


Assuntos
Antineoplásicos/farmacologia , Dactinomicina/farmacologia , Neoplasias Ovarianas/metabolismo , Fotoquimioterapia/métodos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos
10.
J Mater Chem B ; 8(23): 5131-5142, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32420578

RESUMO

Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC). The results showed that Au NRs enhance the absorption and emission intensity of TMPyP and improve its photodynamic efficiency and fluorescence imaging capability in both 2D cultures and 3D cancer constructs. Au NRs are promising theranostic agents for delivery of photosensitisers for HNSCC treatment and imaging.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/síntese química , Porfirinas/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Propriedades de Superfície , Células Tumorais Cultivadas
11.
Cell Tissue Res ; 379(3): 511-520, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31776824

RESUMO

Despite being considered present in most vascularised tissues, lymphatic vessels have not been properly shown in human adipose tissue (AT). Our goal in this study is to investigate an unanswered question in AT biology, regarding lymphatic network presence in tissue parenchyma. Using human subcutaneous (S-) and visceral (V-) AT samples with whole mount staining for lymphatic specific markers and three-dimensional imaging, we showed lymphatic capillaries and larger lymphatic vessels in the human VAT. Conversely, in the human SAT, microcirculatory lymphatic vascular structures were rarely detected and no initial lymphatics were found.


Assuntos
Tecido Adiposo/anatomia & histologia , Vasos Linfáticos/anatomia & histologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Gordura Intra-Abdominal/anatomia & histologia , Gordura Intra-Abdominal/irrigação sanguínea , Gordura Intra-Abdominal/fisiologia , Vasos Linfáticos/irrigação sanguínea , Vasos Linfáticos/fisiologia , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/anatomia & histologia , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/fisiologia
12.
Int J Surg Protoc ; 14: 24-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851732

RESUMO

Introduction: 'Personalised medicine' aims to tailor interventions to the individual, and has become one of the fastest growing areas of cancer research. One of these approaches is to harvest cancer cells from patients and grow them in the laboratory, which can then be subjected to treatments and the response assessed. We have developed a 3D tumour model with a complex protein matrix that mimics the tumour stroma, cell to cell and cell-matrix interactions seen in vivo, called a tumouroid. In this study, we test the acceptability and feasibility of using this model to establish patient-derived tumouroids. Methods and analysis: This is a first in-human study using prospective tissue and data collection of adult participants with confirmed or suspected renal cell carcinoma. The goals of the study are to assess patient acceptability to the use of patient-derived tumour models for future treatment decisions, and to assess the feasibility of generating patient-specific renal cancer tumouroids that can be challenged with drugs. These goals will be realised through the collection of tumour samples (expected n = 10), participant-completed questionnaires (expected n = 10), and in-depth semi-structured interviews with patients (expected n = 5). Collected multiregional tumour samples will be dissociated to isolate primary cells which are then expanded in vitro and incorporated into tumouroids. Drug challenge will ensue and the response will be categorised into "responder", "weak responder", and "non-responder". Statistical analysis will be descriptive. Ethics and dissemination: The study has ethical approval (REC reference 17/LO/1744). Findings will be made available to patients, clinicians, funders, and the National Health Service (NHS) through presentations at national and international meetings, peer-reviewed publications, social media and patient support groups. Trial registration: Registered on ClinicalTrials.gov (NCT03300102).

13.
Adv Healthc Mater ; 8(10): e1801556, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30945813

RESUMO

Despite the attention given to the development of novel responsive implants for regenerative medicine applications, the lack of integration with the surrounding tissues and the mismatch with the dynamic mechanobiological nature of native soft tissues remain in the current products. Hierarchical porous membranes based on a poly (urea-urethane) (PUU) nanohybrid have been fabricated by thermally induced phase separation (TIPS) of the polymer solution at different temperatures. Thermoresponsive stiffness softening of the membranes through phase transition from the semicrystalline phase to rubber phase and reverse self-assembly of the quasi-random nanophase structure is characterized at body temperature near the melting point of the crystalline domains of soft segments. The effects of the porous structure and stiffness softening on proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBM-MSCs) are investigated. The results of immunohistochemistry, histological, ELISA, and qPCR demonstrate that hBM-MSCs maintain their lineage commitment during stiffness relaxation; chondrogenic differentiation is favored on the soft and porous scaffold, while osteogenic differentiation is more prominent on the initial stiff one. Stiffness relaxation stimulates more osteogenic activity than chondrogenesis, the latter being more influenced by the synergetic coupling effect of softness and porosity.


Assuntos
Diferenciação Celular , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Agrecanas/metabolismo , Proliferação de Células , Condrogênese , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células-Tronco Mesenquimais/citologia , Osteogênese , Polímeros/química , Poliuretanos/química , Porosidade , Temperatura , Resistência à Tração , Molhabilidade
14.
Anticancer Res ; 39(4): 1705-1710, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30952709

RESUMO

BACKGROUND/AIM: Fluorescent gold nanoparticles demonstrate strong photoluminescence, photostability, and low cellular toxicity, making them attractive agents for biomedical applications. Mechano-growth factor (MGF) is an isoform of IGF1 and its expression has been demonstrated in malignancies including prostate cancer. MATERIALS AND METHODS: Near-infrared-emitting gold nanoparticles (AuNPs) were synthesized and conjugated to MGF. Following characterization and confirmation of conjugation, these AuNPs were used to investigate the expression of MGF in colon cancer cell lines (HT29 and SW620) and tissues comparing normal and colon cancer. The prostate cancer cell line PC3 and adenocarcinoma tissues were used as positive controls. RESULTS: Colon cancer cell lines, adenocarcinoma tissues and polyp tissues demonstrated evidence of MGF peptide expression, which was not found in normal colon tissues and human umbilical vein endothelial cells. CONCLUSION: MGF appears to be overexpressed in colon cancer tissues, offering a potential unique target for imaging and drug delivery in colon cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/metabolismo , Imunofluorescência , Ouro , Nanopartículas Metálicas , Pontos Quânticos , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Células PC-3
15.
Data Brief ; 22: 885-902, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30723758

RESUMO

This DiB article contains data related to the research article entitled "Cellular responses to thermoresponsive stiffness memory elastomer nanohybrid scaffolds by 3D-TIPS" (Wu et al., 2018). Thermoresponsive poly (urea-urethane) nanohybrid elastomer (PUU-POSS) scaffolds were implanted in rats for up to 3 months. The porous structure and tensile mechanical properties of the scaffolds are listed and compared before and after in vitro and in vivo tests. The details of the histological analysis of the explants with different initial stiffness and porous structures at various time points are presented. The images and data presented support the conclusion about the coupled effects of stiffness softening and the hierarchical porous structure modulating tissue ingrowth, vascularization and macrophage polarization in the article (Wu et al., 2018).

16.
Acta Biomater ; 85: 157-171, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30557696

RESUMO

Increasing evidence suggests the contribution of the dynamic mechanical properties of the extracellular matrix (ECM) to regulate tissue remodeling and regeneration. Following our recent study on a family of thermoresponsive 'stiffness memory' elastomeric nanohybrid scaffolds manufactured via an indirect 3D printing guided thermally-induced phase separation process (3D-TIPS), this work reports in vitro and in vivo cellular responses towards these scaffolds with different initial stiffness and hierarchically interconnected porous structure. The viability of mouse embryonic dermal fibroblasts in vitro and the tissue responses during the stiffness softening of the scaffolds subcutaneously implanted in rats for three months were evaluated by immunohistochemistry and histology. Scaffolds with a higher initial stiffness and a hierarchical porous structure outperformed softer ones, providing initial mechanical support to cells and surrounding tissues before promoting cell and tissue growth during stiffness softening. Vascularization was guided throughout the digitally printed interconnected networks. All scaffolds exhibited polarization of the macrophage response from a macrophage phenotype type I (M1) towards a macrophage phenotype type II (M2) and down-regulation of the T-cell proliferative response with increasing implantation time; however, scaffolds with a more pronounced thermo-responsive stiffness memory mechanism exerted higher inflammo-informed effects. These results pave the way for personalized and biologically responsive soft tissue implants and implantable device with better mechanical matches, angiogenesis and tissue integration. Statement of Significance This work reports cellular responses to a family of 3D-TIPS thermoresponsive nanohybrid elastomer scaffolds with different stiffness softening both in vitro and in vivo rat models. The results, for the first time, have revealed the effects of initial stiffness and dynamic stiffness softening of the scaffolds on tissue integration, vascularization and inflammo-responses, without coupling chemical crosslinking processes. The 3D printed, hierarchically interconnected porous structures guide the growth of myofibroblasts, collagen fibers and blood vessels in real 3D scales. In vivo study on those unique smart elastomer scaffolds will help pave the way for personalized and biologically responsive soft tissue implants and implantable devices with better mechanical matches, angiogenesis and tissue integration.


Assuntos
Elastômeros/química , Nanopartículas/química , Impressão Tridimensional , Temperatura , Tecidos Suporte/química , Células 3T3 , Animais , Fenômenos Biomecânicos , Proliferação de Células , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Neovascularização Fisiológica , Compostos de Organossilício/química , Poliuretanos/química , Ratos Sprague-Dawley , Linfócitos T/citologia
17.
Nanoscale ; 10(43): 20366-20376, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30376028

RESUMO

Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice.


Assuntos
Citosol/metabolismo , Citotoxinas/metabolismo , Lipossomos/química , Fármacos Fotossensibilizantes/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Citotoxinas/química , Citotoxinas/farmacologia , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Luz , Lipossomos/síntese química , Maleimidas/química , Microscopia Confocal , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/metabolismo , Ratos , Saporinas/química , Saporinas/metabolismo
18.
Data Brief ; 21: 133-142, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30338287

RESUMO

This article contains data related to the research article entitled "Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells" [1] (Wu et al., 2018). Cells respond to the local microenvironment in a context dependent fashion and a continuous challenge is to provide a living construct that can adapt to the viscoelasticity changes of surrounding tissues. Several materials are attractive candidates to be used in tissue engineering, but conventional manufactured scaffolds are primarily static models with well-defined and stable stiffness that lack the dynamic biological nature required to undergo changes in substrate elasticity decisive in several cellular processes key during tissue development and wound healing. A family of poly (urea-urethane) (PUU) elastomeric nanohybrid scaffolds (PUU-POSS) with thermoresponsive mechanical properties that soften by reverse self-assembling at body temperature had been developed through a 3D thermal induced phase transition process (3D-TIPS) at various thermal conditions: cryo-coagulation (CC), cryo-coagulation and heating (CC + H) and room temperature coagulation and heating (RTC + H). The stiffness relaxation and stiffness softening of these scaffolds suggest regulatory effects in proliferation and differentiation of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) towards the chondrogenic and osteogenic lineages.

19.
Biomaterials ; 186: 64-79, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30296596

RESUMO

The cellular microenvironment is dynamic, remodeling tissues lifelong. The biomechanical properties of the extracellular matrix (ECM) influence the function and differentiation of stem cells. While conventional artificial matrices or scaffolds for tissue engineering are primarily static models presenting well-defined stiffness, they lack the responsive changes required in dynamic physiological settings. Engineering scaffolds with varying elastic moduli is possible, but often lead to stiffening and chemical crosslinking of the molecular structure with limited control over the scaffold architecture. A family of indirectly 3D printed elastomeric nanohybrid scaffolds with thermoresponsive mechanical properties that soften by reverse self-assembling at body temperature have been developed recently. The initial stiffness and subsequent stiffness relaxation of the scaffolds regulated proliferation and differentiation of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) towards the chondrogenic and osteogenic lineages over 4 weeks, as measured by immunohistochemistry, histology, ELISA and qPCR. hBM-MSCs showed enhanced chondrogenic differentiation on softer scaffolds and osteogenic differentiation on stiffer ones, with similar relative expression to that of human femoral head tissue. Overall, stiffness relaxation favored osteogenic activity over chondrogenesis in vitro.


Assuntos
Condrogênese , Elastômeros/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/metabolismo , Osteogênese , Impressão Tridimensional , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Elasticidade , Matriz Extracelular/metabolismo , Cabeça do Fêmur/citologia , Fibroblastos/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Tecidos Suporte/química
20.
Br J Radiol ; 91(1092): 20180325, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179039

RESUMO

A multi-disciplinary cooperative for nanoparticle-enhanced radiotherapy (NERT) has been formed to review the current status of the field and identify key stages towards translation. Supported by the Colorectal Cancer Healthcare Technologies Cooperative, the cooperative comprises a diverse cohort of key contributors along the translation pathway including academics of physics, cancer and radio-biology, chemistry, nanotechnology and clinical trials, clinicians, manufacturers, industry, standards laboratories, policy makers and patients. Our aim was to leverage our combined expertise to devise solutions towards a roadmap for translation and commercialisation of NERT, in order to focus research in the direction of clinical implementation, and streamline the critical pathway from basic science to the clinic. A recent meeting of the group identified barriers to and strategies for accelerated clinical translation. This commentary reports the cooperative's recommendations. Particular emphasis was given to more standardised and cohesive research methods, models and outputs, and reprioritised research drivers including patient quality of life following treatment. Nanoparticle design criteria were outlined to incorporate scalability of manufacture, understanding and optimisation of biological mechanisms of enhancement and in vivo fate of nanoparticles, as well as existing design criteria for physical and chemical enhancement. In addition, the group aims to establish a long-term and widespread international community to disseminate key findings and create a much-needed cohesive body of evidence necessary for commercial and clinical translation.


Assuntos
Nanopartículas , Radioterapia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...