Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Environ Manage ; 280: 111710, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33308931


Reducing harmful algal blooms in Lake Erie, situated between the United States and Canada, requires implementing best management practices to decrease nutrient loading from upstream sources. Bi-national water quality targets have been set for total and dissolved phosphorus loads, with the ultimate goal of reaching these targets in 9-out-of-10 years. Row crop agriculture dominates the land use in the Western Lake Erie Basin thus requiring efforts to mitigate nutrient loads from agricultural systems. To determine the types and extent of agricultural management practices needed to reach the water quality goals, we used five independently developed Soil and Water Assessment Tool models to evaluate the effects of 18 management scenarios over a 10-year period on nutrient export. Guidance from a stakeholder group was provided throughout the project, and resulted in improved data, development of realistic scenarios, and expanded outreach. Subsurface placement of phosphorus fertilizers, cover crops, riparian buffers, and wetlands were among the most effective management options. But, only in one realistic scenario did a majority (3/5) of the models predict that the total phosphorus loading target would be met in 9-out-of-10 years. Further, the dissolved phosphorus loading target was predicted to meet the 9-out-of-10-year goal by only one model and only in three scenarios. In all scenarios evaluated, the 9-out-of-10-year goal was not met based on the average of model predictions. Ensemble modeling revealed general agreement about the effects of several practices although some scenarios resulted in a wide range of uncertainty. Overall, our results demonstrate that there are multiple pathways to approach the established water quality goals, but greater adoption rates of practices than those tested here will likely be needed to attain the management targets.

Monitoramento Ambiental , Lagos , Agricultura , Canadá , Eutrofização , Fósforo/análise , Qualidade da Água
J Environ Manage ; 279: 111803, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33341725


Coastal eutrophication is a leading cause of degraded water quality around the world. Identifying the sources and their relative contributions to impaired downstream water quality is an important step in developing management plans to address water quality concerns. Recent mass-balance studies of Total Phosphorus (TP) loads of the Maumee River watershed highlight the considerable phosphorus contributions of non-point sources, including agricultural sources, degrading regional downstream water quality. This analysis builds upon these mass-balance studies by using the Soil and Water Assessment Tool to simulate the movement of phosphorus from manure, inorganic fertilizer, point sources, and soil sources, and respective loads of TP and Dissolved Reactive Phosphorus (DRP). This yields a more explicit estimation of source contribution from the watershed. Model simulations indicate that inorganic fertilizers contribute a greater proportion of TP (45% compared to 8%) and DRP (58% compared to 12%) discharged from the watershed than manure sources in the March-July period, the season driving harmful algal blooms. Although inorganic fertilizers contributed a greater mass of TP and DRP than manure sources, the two sources had similar average delivery fractions of TP (2.7% for inorganic fertilizers vs. 3.0% for manure sources) as well as DRP (0.7% for inorganic fertilizers vs. 1.2% for manure sources). Point sources contributed similar proportions of TP (5%) and DRP (12%) discharged in March-July as manure sources. Soil sources of phosphorus contributed over 40% of the March-July TP load and 20% of the March-July DRP load from the watershed to Lake Erie. Reductions of manures and inorganic fertilizers corresponded to a greater proportion of phosphorus delivered from soil sources of phosphorus, indicating that legacy phosphorus in soils may need to be a focus of management efforts to reach nutrient load reduction goals. In agricultural watersheds aground the world, including the Maumee River watershed, upstream nutrient management should not focus solely on an individual nutrient source; rather a comprehensive approach involving numerous sources should be undertaken.

Lagos , Fósforo , Agricultura , Monitoramento Ambiental , Fósforo/análise , Rios , Qualidade da Água
Environ Sci Technol ; 54(9): 5550-5559, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32271010


The United States and Canada called for a 40% load reduction of total phosphorus from 2008 levels entering the western and central basins of Lake Erie to achieve a 6000 MTA target and help reduce its central basin hypoxia. The Detroit River is a significant source of total phosphorus to Lake Erie; it in turn has been reported to receive up to 58% of its load from Lake Huron when accounting for resuspended sediment loads previously unmonitored at the lake outlet. Key open questions are where does this additional load originate, what drives its variability, and how often does it occur. We used a hydrodynamic model, satellite images of resuspension events and ice cover, wave hindcasts, and continuous turbidity measurements at the outlet of Lake Huron to determine where in Lake Huron the undetected load originates and what drives its variability. We show that the additional sediment load, and likely phosphorus, is from wave-induced Lake Huron sediment resuspension, primarily within 30 km of the southeastern shore. When the flow is from southwest or down the center of the lake, the resuspended sediment is not detected at Canada's sampling station at the head of the St. Clair River.

Lagos , Rios , Canadá , Monitoramento Ambiental , Fósforo