RESUMO
ß-hydroxybutyrate (BHB) is an abundant ketone body. To date, all known pathways of BHB metabolism involve interconversion of BHB and primary energy intermediates. Here we show that CNDP2 controls a previously undescribed secondary BHB metabolic pathway via enzymatic conjugation of BHB and free amino acids. This BHB-ylation reaction produces a family of endogenous ketone metabolites, the BHB-amino acids. Genetic ablation of CNDP2 in mice eliminates tissue amino acid BHB-ylation activity and reduces BHB-amino acid levels. Administration of BHB-Phe, the most abundant BHB-amino acid, to obese mice activates neural populations in the hypothalamus and brainstem and suppresses feeding and body weight. Conversely, CNDP2-KO mice exhibit increased food intake and body weight upon ketosis stimuli. CNDP2-dependent amino acid BHB-ylation and BHB-amino acid metabolites are also conserved in humans. Therefore, the metabolic pathways of BHB extend beyond primary metabolism and include secondary ketone metabolites linked to energy balance.
RESUMO
Cardiac aging involves the development of left ventricular hypertrophy alongside a decline in functional capacity. Here, we use neutral blood exchange to demonstrate that the acute removal of age-accumulated blood factors significantly regresses cardiac hypertrophy in aged mice. The reversal of hypertrophy was not attributed to age-associated hemodynamic effects, implicating a role of blood-derived factors. In addition, the overarching paradigm of systemic aging maintains that the age-related overabundance of plasma proteins are largely responsible for causing pathological phenotypes in tissues. Our results suggest that blood metabolites, not proteins, drive cardiac hypertrophy instead. Upon analyzing serum metabolomics data sets, we identified ophthalmic acid as a circulating metabolite whose levels increase with advanced age. Treatment of adult mouse and neonatal rat cardiomyocytes in culture with ophthalmic acid increased their relative surface areas. This study uncovers a non-protein metabolite that may contribute to cardiomyocyte hypertrophy during aging. Identifying a method to counteract ophthalmic acid's hypertrophic effects may reveal novel therapeutic opportunities for cardiac rejuvenation.
RESUMO
N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite.
Assuntos
Rim , Camundongos Knockout , Animais , Humanos , Camundongos , Masculino , Rim/metabolismo , Eliminação Renal , Feminino , Lactatos/metabolismo , Lactatos/sangue , Lactatos/urina , Fenilalanina/metabolismo , Fenilalanina/urina , Fenilalanina/sangue , Camundongos Endogâmicos C57BL , Adulto , Células HEK293RESUMO
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.
Assuntos
Peso Corporal , Ingestão de Alimentos , Hidrolases , Obesidade , Taurina , Animais , Feminino , Humanos , Masculino , Camundongos , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Homeostase , Hidrolases/deficiência , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Rim/metabolismo , Fígado/metabolismo , Fígado/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/enzimologia , Taurina/metabolismo , Taurina/análogos & derivados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ácido Acético/metabolismo , Exercício Físico , Índice de Massa Corporal , Redução de Peso , Metabolismo Secundário , Metabolismo Energético , Tronco Encefálico/metabolismoRESUMO
Plant-parasitic nematodes constrain global food security. During parasitism, they secrete effectors into the host plant from two types of pharyngeal gland cells. These effectors elicit profound changes in host biology to suppress immunity and establish a unique feeding organ from which the nematode draws nutrition. Despite the importance of effectors in nematode parasitism, there has been no comprehensive identification and characterisation of the effector repertoire of any plant-parasitic nematode. To address this, we advance techniques for gland cell isolation and transcriptional analysis to define a stringent annotation of putative effectors for the cyst nematode Heterodera schachtii at three key life-stages. We define 717 effector gene loci: 269 "known" high-confidence homologs of plant-parasitic nematode effectors, and 448 "novel" effectors with high gland cell expression. In doing so we define the most comprehensive "effectorome" of a plant-parasitic nematode to date. Using this effector definition, we provide the first systems-level understanding of the origin, deployment and evolution of a plant-parasitic nematode effectorome. The robust identification of the effector repertoire of a plant-parasitic nematode will underpin our understanding of nematode pathology, and hence, inform strategies for crop protection.
Assuntos
Interações Hospedeiro-Parasita , Doenças das Plantas , Animais , Doenças das Plantas/parasitologia , Tylenchoidea/genética , Plantas/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Nematoides/genéticaRESUMO
BACKGROUND: Substantial weight loss in people living with type 2 diabetes (T2D) can reduce the need for glucose-lowering medications while concurrently lowering glycemia below the diagnostic threshold for the disease. Furthermore, weight-loss interventions have also been demonstrated to improve aspects of underlying T2D pathophysiology related to ectopic fat in the liver and pancreatic beta-cell function. As such, the purpose of this secondary analysis was to explore the extent to which a low-carbohydrate and energy-restricted (LCER) diet intervention improves markers of beta-cell stress/function, liver fat accumulation, and metabolic related liver function in people with type 2 diabetes. METHODS: We conducted secondary analyses of blood samples from a larger pragmatic community-based parallel-group randomized controlled trial involving a 12-week pharmacist implemented LCER diet (Pharm-TCR: <50 g carbohydrates; ~850-1100 kcal/day; n = 20) versus treatment-as-usual (TAU; n = 16). Participants were people with T2D, using ≥ 1 glucose-lowering medication, and a body mass index of ≥ 30 kg/m2. Main outcomes were C-peptide to proinsulin ratio, circulating microRNA 375 (miR375), homeostatic model assessment (HOMA) beta-cell function (B), fatty liver index (FLI), hepatic steatosis index (HSI), HOMA insulin resistance (IR), and circulating fetuin-A and fibroblast growth factor 21 (FGF21). Data were analysed using linear regression with baseline as a covariate. RESULTS: There was no observed change in miR375 (p = 0.42), C-peptide to proinsulin ratio (p = 0.17) or HOMA B (p = 0.15). FLI and HSI were reduced by -25.1 (p < 0.0001) and - 4.9 (p < 0.0001), respectively. HOMA IR was reduced by -46.5% (p = 0.011). FGF21 was reduced by -161.2pg/mL (p = 0.035) with a similar tendency found for fetuin-A (mean difference: -16.7ng/mL; p = 0.11). These improvements in markers of hepatic function were accompanied by reductions in circulating metabolites linked to hepatic insulin resistance (e.g., diacylglycerols, ceramides) in the Pharm TCR group. CONCLUSIONS: The Pharm-TCR intervention did not improve fasting indices of beta-cell stress; however, markers of liver fat accumulation and and liver function were improved, suggesting that a LCER diet can improve some aspects of the underlying pathophysiology of T2D. TRIAL REGISTRATION: Clinicaltrials.gov (NCT03181165).
RESUMO
Species traits may determine plant interactions along with soil microbiome, further shaping plant-soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two-phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait-PSF associations. When grown in forb-conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid-conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more-negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota-mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life-history strategies under selection pressures imposed by soil biota.
Assuntos
Microbiologia do Solo , Solo , Solo/química , Modelos Biológicos , Magnoliopsida/fisiologia , Especificidade da EspécieRESUMO
N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.
RESUMO
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites4,5. One such taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by diverse physiologic perturbations that alter taurine and/or acetate flux, including endurance exercise7, nutritional taurine supplementation8, and alcohol consumption6,9. While taurine N-acetyltransferase activity has been previously detected in mammalian cells6,7, the molecular identity of this enzyme, and the physiologic relevance of N-acetyltaurine, have remained unknown. Here we show that the orphan body mass index-associated enzyme PTER (phosphotriesterase-related)10 is the principal mammalian taurine N-acetyltransferase/hydrolase. In vitro, recombinant PTER catalyzes bidirectional taurine N-acetylation with free acetate as well as the reverse N-acetyltaurine hydrolysis reaction. Genetic ablation of PTER in mice results in complete loss of tissue taurine N-acetyltransferase/hydrolysis activities and systemic elevation of N-acetyltaurine levels. Upon stimuli that increase taurine levels, PTER-KO mice exhibit lower body weight, reduced adiposity, and improved glucose homeostasis. These phenotypes are recapitulated by administration of N-acetyltaurine to wild-type mice. Lastly, the anorexigenic and anti-obesity effects of N-acetyltaurine require functional GFRAL receptors. Together, these data uncover enzymatic control of a previously enigmatic pathway of secondary taurine metabolism linked to energy balance.