Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571009

RESUMO

Current strategies for the detection of disease biomarkers often require enzymatic assays that may have limited sensitivity due to the inferior stability and vulnerable catalytic activity of the enzyme. A new enzyme-free amplification method for identifying suitable biomarkers is necessary to lower the limit of detection and improve many critical diagnosis applications. Here, we presented an en-zyme-free amplified plasmonic immunoassay that enhanced the detection sensitivity of disease biomarkers by combining a novel plasmon-induced silver photoreduction system with a silver nanoparticle (AgNP)-linked immunoassay. The key step to achieving ultrasensitivity was to use Ag+ from dissolved AgNPs that control the growth rate of the silver coating on plasmonic nanosensors under visible light illumination. We demonstrated the outstanding sensitivity and robustness of this assay by detecting the disease biomarker alpha-fetoprotein (AFP) at a low concentration of 3.3 fg mL-1. The detection of AFP was further confirmed in the sera of hepatocellular carcinoma patients.

2.
Nat Commun ; 11(1): 2307, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385284

RESUMO

With the development of new instruments and methodologies, the highly dynamic behaviors of nanoparticle at the liquid-solid interface have been studied. However, the dynamic nature of the electrochemical behavior of individual nanoparticles on the electrode interface is still poorly understood. Here, we generalize scaling relations to predict nanoparticle-electrode interactions by examining the adsorption energy of nanoparticles at an ultramicroelectrode interface. Based on the theoretical predictions, we investigate the interaction-modulated dynamic electrochemical behaviors for the oxidation of individual Ag nanoparticles. Typically, significantly distinct current traces are observed owing to the adsorption-mediated motion of Ag nanoparticles. Inspired by restraining the stochastic paths of particles in the vicinity of the electrode interface to produce surface-confined current traces, we successfully realize high-resolution size measurements of Ag nanoparticles in mixed-sample systems. This work offers a better understanding of dynamic interactions of nanoparticles at the electrochemical interface and displays highly valuable applications of single-entity electrochemistry.

4.
Anal Chem ; 92(8): 5621-5644, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32182049
5.
Analyst ; 145(7): 2510-2514, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083634

RESUMO

In this study, we designed SiNX solid-state nanopores to detect the temperature effect on the hydrogen nanobubble formation. Here, we integrated a temperature controller with the highly sensitive nanopore. As the temperature decreases from 25 °C to 5 °C, the occurrence of the nanobubble nucleation inside a 12.3 nm SiNX nanopore confined space decreased from 102 s-1 to 23 s-1, and the life-time of nanobubbles increased from 1.16 ms to 4.78 ms. The results further gave the activation energy for nanobubble nucleation which was 8.1 × 10-20 J with a 12.3 nm SiNX nanopore. Our method provides an efficient analytical tool for revealing the temperature-dependent nanobubble nucleation, which further benefits the fundamental understanding of nanobubble nucleation.

6.
Analyst ; 145(4): 1179-1183, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31898708

RESUMO

Biological nanopore technology has the advantages of high selectivity and high reproducibility for characterizing single biomolecules. However, it is challenging to achieve protein sequencing owing to the heterogeneous charge distributions of the protein and the small structural difference from each amino acid. Here, we took the inherent electrochemically confined sensing interface of the aerolysin nanopore to enhance its interaction with single amino acids. The results showed that single cysteine molecules, a highly reactive amino acid in aging and neurodegenerative diseases, could be captured and monitored by an aerolysin nanopore as it produced distinctive current blockages with a prolonged statistical duration of 0.11 ± 0.02 ms at +120 mV. This is the first report of the detection of a single amino acid molecule by a biological nanopore directly without any modification and labelling. This study facilitates the direct detection of single amino acids by regulating the characteristic interaction between the single amino acids and the designed sensing interface of aerolysin nanopores.

7.
J Am Chem Soc ; 141(51): 20187-20197, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31789030

RESUMO

Mimicking cellular transport mechanisms to make solid-state smart nanochannels has long been of great interest for their diverse applications, but it poses a critical synthetic challenge. Covalent organic frameworks (COFs) are porous crystalline materials with tailor-made nanochannels and hold great potential for ion and molecule transport. We demonstrate here for the first time that 2D COFs possess the necessary merits to be promising solid-state nanochannels for selective transport of amino acids, which are the basis for life. By imine condensations of a C3-symmetric trialdehyde and a mixture of diamines with and without divinyl groups, two vinyl-functionalized 2D COFs are crystallized. Both multivariant COFs afford straight 1D mesoporous channels formed by AA or AB stacking of layered hexagonal networks. After postmodification with chiral ß-cyclodextrin (ß-CD) via thiol-ene click reactions, the COFs are further fabricated into free-standing mixed matrix membranes (MMMs) that can selectively transport amino acids, as revealed by monitoring not only transmembrane ionic current signature but also concentration changes of permeated substrates. Specially, in the membrane system, the AA stacked COF exhibits higher chiral recognition capability toward histidine enantiomers than the AB stacked COF because of its uniform open channels decorated with ß-CD. This work highlights the great potential of COF nanochannels as a platform for accumulating functional groups for selective transport of small molecules and even biomolecules in the solid state.

8.
Electrophoresis ; 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31652002

RESUMO

Nanobubble nucleation study is important for understanding the dynamic behavior of nanobubble growth, which is instructive for the nanobubble applications. Benefiting from nanopore fabrication, herein, we fabricated a sub-9 nm SiNX nanopore with the comparable size to nanobubbles at early-stage. The confined nanopore interface serves as a generator for producing nanobubbles by the chemical reaction between NaBH4 and H2 O and as an ultra-sensitive sensor for monitoring the H2 nanobubble nucleation process. By carrying out the NaBH4 concentration-dependent experiments, we found the life-time of nanobubbles decreased 250 times and the frequency of nanobubble generation increased 38 times with the NaBH4 concentration increasing from 6 to 100 mM. The long-time equilibrium between gas molecules inward flux and outward flux could prolong the life-time of nanobubbles to hundreds of milliseconds at low NaBH4 concentration. The raw current trace depicted that the transient accumulation and dissolution of cavity occurred during all the life-time of nanobubbles. Therefore, the sub-9 nm SiNX nanopore shows a strong ability for real-time monitoring the nanobubble nucleation at early-stage with high temporal and spatial resolution. This work provides a guide to study the dynamic and stochastic characteristics of nanobubbles.

9.
J Am Chem Soc ; 141(40): 15720-15729, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31509414

RESUMO

Single-molecule measurements have greatly enhanced our understanding of living systems. Biological systems offer nanopores, a sub-class of membrane proteins, the well-defined confined space for accommodating a single molecule. The biological nanopore acts as a single-biomolecule interface for capturing and identifying a single molecule of interest, and thus it can be used as a single-molecule sensor. In this Perspective, we focus on biological nanopore-based single-biomolecule interfaces for single-biomolecule detection. First, we outline the design of the nanopore-based single-biomolecule interface, which provides rich stochastic information regarding each biomolecule. Next, we highlight future research directions beyond DNA sequencing, including detection of rare species, identification of hidden intermediates, spectral analysis of covalent/noncovalent interactions, and tracing of the dynamic pathways of single-biopolymer behaviors. The concept of a "single-molecule ionic spectrum" is discussed, which may allow mapping of noncovalent interactions at an atomic level in the future. We also discuss the challenges and goals for the future to make this measurement possible for addressing entirely new types of biological questions, which would be an exciting area of future research.

10.
J Phys Chem Lett ; : 4935-4941, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31403310

RESUMO

The hydrogen bond (HB), one of the essential properties of water, tends to link water molecules to form dynamic water clusters. Extrinsic ions could change the size distribution of water clusters by influencing HBs. But the mechanism, especially the influence range of ions on HBs, is still in dispute due to limitation of analytical methods. Herein, we use in situ liquid ToF-SIMS analysis combined with density functional theory calculation to study the influence of different halide anions on HBs at a submicropore confined liquid-vacuum interface. Our experimental results demonstrated that anions show synchronous local and long-range effects on HBs. Specifically, the larger the anion is, the greater degree the long-range HB network and the local hydration number of anions are influenced. More importantly, we found that the long-range effect on the HB network is influenced by nuclear quantum effects, whereas the local effect on water molecules in the first hydration shell is not.

11.
Front Chem ; 7: 528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417894

RESUMO

The aerolysin nanopore displays a charming sensing capability for single oligonucleotide discrimination. When reading from the electrochemical signal, stronger interaction between the aerolysin nanopore and oligonucleotide represent prolonged duration time, thereby amplifying the hidden but intrinsic signal thus improving the sensitivity. In order to further understand and optimize the performance of the aerolysin nanopore, we focus on the investigation of the hydrogen bond interaction between nanopore, and analytes. Taking advantage of site-direct mutagenesis, single residue is replaced. According to whole protein sequence screening, the region near K238 is one of the key sensing regions. Such a positively charged amino acid is then mutagenized into cysteine and tyrosine denoted as K238C, and K238Y. As (dA)4 traverses the pores, K238C dramatically produces a six times longer duration time than the WT aerolysin nanopore at the voltage of +120 mV. However, K238Y shortens the dwell time which suggests the acceleration of the translocation causing poor sensitivity. Referring to our previous findings in K238G, and K238F, our results suggest that the hydrogen bond does not dominate the dynamic translocation process, but enhances the interaction between pores and analytes confined in such nanopore space. These insights give detailed information for the rational design of the sensing mechanism of the aerolysin nanopore, thereby providing further understanding for the weak interactions between biomolecules and the confined space for nanopore sensing.

12.
Anal Chem ; 91(16): 10361-10365, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31373202

RESUMO

Hydrogen evolution reaction (HER) catalyzed by molybdenum sulfide quantum dots (MoS2 QDs) has attracted extensive attention in the energy field. Monitoring HER catalyzed by MoS2 QDs based on a glass nanopore with an electrochemically confined effect was proposed for the first time. MoS2 QDs inside the glass nanopore is driven toward the orifice of the nanopore and bonded with the Ag nanoparticles (Ag NPs) to form a single nanocomposite. When enough voltage is applied across the orifice, the single Ag NP acts as a single nanoparticle electrode to conduct the electrochemically bipolar reaction on its two extremities. In the process, HER is catalyzed by MoS2 QDs, and Ag NPs are oxidized at the same time. The appearance of blockages on the elevated ionic current is attributed to the generation of a H2 bubble. Furthermore, by analyzing the modulations in the ionic current oscillation, the frequency of hydrogen bubble generation that is related to the catalytic efficiency of MoS2 QDs could be estimated. The results reveal the capability of the glass nanopore for the real-time monitoring electrocatalytic behavior, which makes the glass nanopore an ideal candidate to further reveal the heterogeneity of catalytic capability at the single particle level.

13.
Nat Protoc ; 14(9): 2672-2690, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31391579

RESUMO

Understanding the photoinduced electron-transfer process is of paramount importance for realizing efficient solar energy conversion. It is rather difficult to clarify the link between the specific properties and the photoelectrochemical performance of an individual component in an ensemble system because data are usually presented as averages because of interplay of the heterogeneity of the bulk system. Here, we report a step-by-step protocol to fabricate an ultrasensitive photoelectrochemical platform for real-time detection of the intrinsic photoelectrochemical behaviors of a single entity with picoampere and sub-millisecond sensitivity. Using a micron-thickness nanoparticulate TiO2-filmed Au ultramicroelectrode (UME) as the electron-transport electrode, photocurrent transients can be observed for each individual dye-tagged oxide semiconductor nanoparticle collision associated with a single-entity photoelectrochemical reaction. This protocol allows researchers to obtain high-resolution photocurrent signals to quantify the photoinduced electron-transfer properties of an individual entity, as well as to precisely process the data obtained. We also include procedures for dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM) imaging and collision frequency-concentration correlation to confirm that the photoelectrochemical collision events occur at an unambiguously single-entity level. The time required for the entire protocol is ~36 h, with a single-entity photoelectrochemical measurement taking <1 h to complete for each independent experiment. This protocol requires basic nanoelectrochemistry and nanotechnology skills, as well as an intermediate-level understanding of photoelectrochemistry.


Assuntos
Técnicas Eletroquímicas/métodos , Nanotecnologia/métodos , Fotoquímica/métodos , Técnicas Eletroquímicas/instrumentação , Elétrons , Desenho de Equipamento , Imagem Molecular , Nanoestruturas/química , Nanotecnologia/instrumentação , Fotoquímica/instrumentação , Pontos Quânticos/química , Titânio/química
14.
ACS Omega ; 4(4): 7543-7549, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459847

RESUMO

The exploration of simultaneous removal of co-existing or multiple pollutants from water by the means of nanomaterials paves a new avenue that is free from secondary pollution and inexpensive. In the aquatic environment, river water contains a mixture of ions, which can influence the adsorption process. In this respect, removing heavy metal ions becomes a true challenge. Here, four heavy metal ions, namely, Pb2+, Cd2+, Cu2+, and Ni2+, have been successfully removed simultaneously from river water using ultrafine mesoporous magnetite (Fe3O4) nanoparticles (UFMNPs) based on the affinity of these metal ions toward the UFMNP surfaces as well as their unique mesoporous structure, promoting the easy adsorption. The individual removal efficiencies of Pb2+, Cd2+, Cu2+, and Ni2+ ions from river water were 98, 87, 90, and 78%, respectively, whereas the removal efficiencies of the mixed Pb2+, Cd2+, Cu2+, and Ni2+ ions were 86, 80, 84, and 54%, respectively, in the same river water. Thus, the data clearly indicate the complex removal of heavy metal ions in multi-ion systems. This study has demonstrated the huge potential of UFMNPs to be effective for their use in wastewater treatment, especially to simultaneously remove multiple heavy metal ions from aqueous media.

15.
Chem Sci ; 10(24): 6215-6219, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31360429

RESUMO

Electrochemical redox conversion between ferricyanide and ferrocyanide on a gold electrode is one of the most classical reactions in electrochemistry. In textbooks, the gold electrode is seen as chemically inert, on which only the adsorption/desorption of [Fe(CN)6]3/4- and electron transfer take place. Here, the electrochemical process of [Fe(CN)6]3/4- on a gold electrode was revisited using a vacuum-compatible microfluidic electrochemical cell in combination with operando liquid ToF-SIMS. An intermediate, Au(CN)2 -, was observed in the cyclic voltammetry of ferricyanide with an interesting periodic potential-dependent variation trend. It was demonstrated that the gold electrode participated in the redox reaction of [Fe(CN)6]3/4- by competing with it to form Au(CN)2 -, since the formation constant was Fe(CN)6 3- > Au(CN)2 - > Fe(CN)6 4-. The formation and evolution of Au(CN)2 - depends on the ratio of Fe(iii) and Fe(ii) on the surface of the gold electrode, which was determined by the redox conversion between Fe(iii) and Fe(ii) as well as the electric field force-based attraction or repulsion between the gold electrode and [Fe(CN)6]3/4-. Both of these factors were potential-dependent, resulting in the periodic change of Au(CN)2 - in the dynamic potential scan of [Fe(CN)6]3/4-. These results provided solid molecular evidence for the participation of the gold electrode in the [Fe(CN)6]3/4- redox system, which will deepen mechanistic understandings of related electrochemical applications.

16.
Chem Commun (Camb) ; 55(63): 9311-9314, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31310244

RESUMO

Discrimination between cysteine and homocysteine at the single-molecule level is achieved within a K238Q mutant aerolysin nanopore, which provides a confined space for high spatial resolution to identify the amino acid difference with a 5'-benzaldehyde poly(dA)4 probe. Our strategy allows potential detection and characterization of various amino acids and their modifications, and provides a crucial step towards developing nanopore protein sequencing devices.


Assuntos
Toxinas Bacterianas/química , Cisteína/análise , Homocisteína/análise , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cromatografia Líquida de Alta Pressão , Mutagênese Sítio-Dirigida , Poli A/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Espectrometria de Massas por Ionização por Electrospray
17.
Nat Protoc ; 14(7): 2015-2035, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31168087

RESUMO

Measurements of a single entity underpin knowledge of the heterogeneity and stochastics in the behavior of molecules, nanoparticles, and cells. Electrochemistry provides a direct and fast method to analyze single entities as it probes electron/charge-transfer processes. However, a highly reproducible electrochemical-sensing nanointerface is often hard to fabricate because of a lack of control of the fabrication processes at the nanoscale. In comparison with conventional micro/nanoelectrodes with a metal wire inside, we present a general and easily implemented protocol that describes how to fabricate and use a wireless nanopore electrode (WNE). Nanoscale metal deposition occurs at the tip of the nanopipette, providing an electroactive sensing interface. The WNEs utilize a dynamic ionic flow instead of a metal wire to sense the interfacial redox process. WNEs provide a highly controllable interface with a 30- to 200-nm diameter. This protocol presents the construction and characterization of two types of WNEs-the open-type WNE and closed-type WNE-which can be used to achieve reproducible electrochemical measurements of single entities. Combined with the related signal amplification mechanisms, we also describe how WNEs can be used to detect single redox molecules/ions, analyze the metabolism of single cells, and discriminate single nanoparticles in a mixture. This protocol is broadly applicable to studies of living cells, nanomaterials, and sensors at the single-entity level. The total time required to complete the protocol is ~10-18 h. Each WNE costs ~$1-$3.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletrodos , Nanoporos , Nanotecnologia/métodos , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Células MCF-7 , Nanopartículas/análise , Oxirredução , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Tecnologia sem Fio
18.
Nat Commun ; 10(1): 2414, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160575

RESUMO

Dendrimers are homostructural and highly branched macromolecules with unique dendritic effects and extensive use in multidisciplinary fields. Although thousands of dendrimers have been synthesized in solution, the on-surface synthetic protocol for planar dendrimers has never been explored, limiting the elucidation of the mechanism of dendritic effects at the single-molecule level. Herein, we describe an on-surface synthetic approach to planar dendrimers, in which exogenous palladium is used as a catalyst to address the divergent cross-coupling of aryl bromides with isocyanides. This reaction enables one aryl bromide to react with two isocyanides in sequential steps to generate the divergently grown product composed of a core and two branches with high selectivity and reactivity. Then, a dendron with four branches and dendrimers with eight or twelve branches in the outermost shell are synthesized on Au(111). This work opens the door for the on-surface synthesis of various planar dendrimers and relevant macromolecular systems.

19.
Anal Chem ; 91(15): 9910-9915, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241901

RESUMO

Protein kinases play a critical role in regulating virtually all cellular processes. Here, we developed a novel one-step method based on a wild-type aerolysin nanopore, which enables kinase activity detection without labeling/modification, immobilization, cooperative enzymes and complicated procedures. By virtual of the positively charged confinement of the aerolysin nanopore, the kinase-induced phosphopeptides are specially captured while the positively charged substrate peptides might move away from the pore by the electric field. Combining with internal standard method, the event frequency of the phosphopeptides exhibited a dose-dependent response with kinases. The detection limit of 0.005 U/µL has been achieved with protein kinase A as a model target. This method also allowed kinase inhibitor screening, kinase activity sensing in cell lysates and the real-time monitoring of kinase-catalyzed phosphorylation at singe molecule level, which could further benefit fundamental biochemical research, clinical diagnosis and kinase-targeted drug discovery. Moreover, this nanopore sensor shows strong capacity for the other enzymes that altered substrate charge (e.g., sulfonation, carboxylation, or amidation).

20.
J Phys Chem Lett ; 10(12): 3276-3281, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141367

RESUMO

We reported a novel method to real-time monitor the redox behaviors of single Ag nanoparticles (AgNPs) at a Au ultramicroelectrode between oxidizing and reducing pulse potentials using the nanocollision electrochemical method. At fast pulse potentials, the instantaneous anodic-cathodic current transients of a single AgNP were observed for the electrooxidation of AgNP, followed by the electroreduction of the newborn silver oxide (AgO) NP in alkaline media via switching of redox potentials; however, only anodic oxidation signals of individual AgNPs were observed in neutral solution. Through this study, we have revealed the substantial different dynamic nanocollision electrochemical behaviors of single AgNPs on the electrode surface in various media. Our study offers a new view for clearly clarifying in situ tracking of the electron-transfer process of single NPs by correlating electrochemical oxidation and reduction behaviors with the complementary information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA