Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Filtros adicionais











Intervalo de ano
1.
Clin Sci (Lond) ; 133(14): 1537-1548, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31285364

RESUMO

Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.

2.
Sci Rep ; 9(1): 9607, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270370

RESUMO

Although optimal therapy for myocardial infarction includes reperfusion to restore blood flow to the ischemic region, ischemia/reperfusion (IR) also initiates an inflammatory response likely contributing to adverse left ventricular (LV) extracellular matrix (ECM) remodeling. Galectin-3 (Gal-3), a ß-galactoside-binding-lectin, promotes cardiac remodeling and dysfunction. Our aim is to investigate whether Gal-3 pharmacological inhibition using modified citrus pectin (MCP) improves cardiac remodeling and functional changes associated with IR. Wistar rats were treated with MCP from 1 day before until 8 days after IR (coronary artery ligation) injury. Invasive hemodynamics revealed that both LV contractility and LV compliance were impaired in IR rats. LV compliance was improved by MCP treatment 8 days after IR. Cardiac magnetic resonance imaging showed decreased LV perfusion in IR rats, which was improved with MCP. There was no difference in LV hypertrophy in MCP-treated compared to untreated IR rats. However, MCP treatment decreased the ischemic area as well as Gal-3 expression. Gal-3 blockade paralleled lower myocardial inflammation and reduced fibrosis. These novel data showing the benefits of MCP in compliance and ECM remodeling in IR reinforces previously published data showing the therapeutic potential of Gal-3 inhibition.

3.
Eur J Heart Fail ; 21(3): 272-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30714667

RESUMO

Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins - resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti-fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research.

4.
Hypertension ; 73(3): 602-611, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30612490

RESUMO

Myocardial fibrosis is a main contributor to the development of heart failure (HF). CT-1 (cardiotrophin-1) and Gal-3 (galectin-3) are increased in HF and associated with myocardial fibrosis. The aim of this study is to analyze whether CT-1 regulates Gal-3. Proteomic analysis revealed that Gal-3 was upregulated by CT-1 in human cardiac fibroblasts in parallel with other profibrotic and proinflammatory markers. CT-1 upregulation of Gal-3 was mediated by ERK (extracellular signal-regulated kinase) 1/2 and Stat-3 (signal transducer and activator of transcription 3) pathways. Male Wistar rats and B6CBAF1 mice treated with CT-1 (20 µg/kg per day) presented higher cardiac Gal-3 levels and myocardial fibrosis. In CT-1-treated rats, direct correlations were found between cardiac CT-1 and Gal-3 levels, as well as between Gal-3 and perivascular fibrosis. Gal-3 genetic disruption in human cardiac fibroblasts and pharmacological Gal-3 inhibition in mice prevented the profibrotic and proinflammatory effects of CT-1. Dahl salt-sensitive hypertensive rats with diastolic dysfunction showed increased cardiac CT-1 and Gal-3 expression together with cardiac fibrosis and inflammation. CT-1 and Gal-3 directly correlated with myocardial fibrosis. In HF patients, myocardial and plasma CT-1 and Gal-3 were increased and directly correlated. In addition, HF patients with high CT-1 and Gal-3 plasma levels presented an increased risk of cardiovascular death. Our data suggest that CT-1 upregulates Gal-3 which, in turn, mediates the proinflammatory and profibrotic myocardial effects of CT-1. The elevation of both molecules in HF patients identifies a subgroup of patients with a higher risk of cardiovascular mortality. The CT-1/Gal-3 axis emerges as a candidate therapeutic target and a potential prognostic biomarker in HF.

5.
Mol Ther ; 27(3): 584-599, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30559069

RESUMO

Heart failure is preceded by ventricular remodeling, changes in left ventricular mass, and myocardial volume after alterations in loading conditions. Concentric hypertrophy arises after pressure overload, involves wall thickening, and forms a substrate for diastolic dysfunction. Eccentric hypertrophy develops in volume overload conditions and leads wall thinning, chamber dilation, and reduced ejection fraction. The molecular events underlying these distinct forms of cardiac remodeling are poorly understood. Here, we demonstrate that miR-148a expression changes dynamically in distinct subtypes of heart failure: while it is elevated in concentric hypertrophy, it decreased in dilated cardiomyopathy. In line, antagomir-mediated silencing of miR-148a caused wall thinning, chamber dilation, increased left ventricle volume, and reduced ejection fraction. Additionally, adeno-associated viral delivery of miR-148a protected the mouse heart from pressure-overload-induced systolic dysfunction by preventing the transition of concentric hypertrophic remodeling toward dilation. Mechanistically, miR-148a targets the cytokine co-receptor glycoprotein 130 (gp130) and connects cardiomyocyte responsiveness to extracellular cytokines by modulating the Stat3 signaling. These findings show the ability of miR-148a to prevent the transition of pressure-overload induced concentric hypertrophic remodeling toward eccentric hypertrophy and dilated cardiomyopathy and provide evidence for the existence of separate molecular programs inducing distinct forms of myocardial remodeling.

6.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29807761

RESUMO

INTRODUCTION AND OBJECTIVES: Lysyl oxidase is overexpressed in the myocardium of patients with hypertensive cardiomyopathy. We aimed to explore whether patients with hypertensive-metabolic heart failure with preserved ejection fraction (HM-HFpEF) also have increased concentrations of circulating prolysyl oxidase (cpLOX) and its possible consequences. METHODS: We quantified cpLOX concentrations in 85 nonischemic patients with stage C, HM-HFpEF, and compared them with those of 51 healthy controls. We also assessed the correlations of cpLOX with myocardial stiffness parameters, collagen turnover products and fibrogenic cytokines, as well as the predictive value of plasma proenzyme levels at 1-year of follow-up. RESULTS: We detected raised cpLOX values and found that they correlated with calculated E/E' ratios and stiffness constants. The subgroup of patients with type I diastolic dysfunction showed a single negative correlation between cpLOX and B-type natriuretic peptide whereas patients with a restrictive diastolic pattern showed a strong correlation between cpLOX and galectin-3. Kaplan-Meier analysis revealed that cpLOX > 52.20 ng/mL slightly increased the risk of a fatal outcome (log-rank = 4.45; P = .034). When Cox regression was used, cpLOX was found to be a significant independent predictor of cardiovascular death or hospitalization due to the decompensation of HM-HFpEF (HR, 1.360; 95%CI, 1.126-1.638; P = .046). CONCLUSIONS: Patients with symptomatic HM-HFpEF show high cpLOX serum levels associated with restrictive diastolic filling indices. These levels represent a moderate risk factor for poor clinical outcome. Throughout the natural history of HM-HFpEF, we observed that cpLOX concentrations were initially negatively correlated with B-type natriuretic peptide but positively correlated with galectin-3 as advanced diastolic dysfunction developed.

7.
Sci Rep ; 8(1): 6801, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717226

RESUMO

Aldosterone (Aldo) contributes to mitochondrial dysfunction and cardiac oxidative stress. Using a proteomic approach, A-kinase anchor protein (AKAP)-12 has been identified as a down-regulated protein by Aldo in human cardiac fibroblasts. We aim to characterize whether AKAP-12 down-regulation could be a deleterious mechanism which induces mitochondrial dysfunction and oxidative stress in cardiac cells. Aldo down-regulated AKAP-12 via its mineralocorticoid receptor, increased oxidative stress and induced mitochondrial dysfunction characterized by decreased mitochondrial-DNA and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expressions in human cardiac fibroblasts. CRISPR/Cas9-mediated knock-down of AKAP-12 produced similar deleterious effects in human cardiac fibroblasts. CRISPR/Cas9-mediated activation of AKAP-12 blunted Aldo effects on mitochondrial dysfunction and oxidative stress in human cardiac fibroblasts. In Aldo-salt-treated rats, cardiac AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased and paralleled increased oxidative stress. In myocardial biopsies from patients with aortic stenosis (AS, n = 26), AKAP-12, mitochondrial-DNA and PGC-1α expressions were decreased as compared to Controls (n = 13). Circulating Aldo levels inversely correlated with cardiac AKAP-12. PGC-1α positively associated with AKAP-12 and with mitochondrial-DNA. Aldo decreased AKAP-12 expression, impairing mitochondrial biogenesis and increasing cardiac oxidative stress. AKAP-12 down-regulation triggered by Aldo may represent an important event in the development of mitochondrial dysfunction and cardiac oxidative stress.

8.
Clin Sci (Lond) ; 132(13): 1471-1485, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29674526

RESUMO

Galectin-3 (Gal-3) is increased in heart failure (HF) and promotes cardiac fibrosis and inflammation. We investigated whether Gal-3 modulates oxidative stress in human cardiac fibroblasts, in experimental animal models and in human aortic stenosis (AS). Using proteomics and immunodetection approaches, we have identified that Gal-3 down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. In parallel, Gal-3 increased peroxide, nitrotyrosine, malondialdehyde, and N-carboxymethyl-lysine levels and decreased total antioxidant capacity. Gal-3 decreased prohibitin-2 expression without modifying other mitochondrial proteins. Prx-4 silencing increased oxidative stress markers. In Gal-3-silenced cells and in heart from Gal-3 knockout mice, Prx-4 was increased and oxidative stress markers were decreased. Pharmacological inhibition of Gal-3 with modified citrus pectin restored cardiac Prx-4 as well as prohibitin-2 levels and improved oxidative status in spontaneously hypertensive rats. In serum from 87 patients with AS, Gal-3 negatively correlated with total antioxidant capacity and positively correlated with peroxide. In myocardial biopsies from 26 AS patients, Gal-3 up-regulation paralleled a decrease in Prx-4 and in prohibitin-2. Cardiac Gal-3 inversely correlated with Prx-4 levels in myocardial biopsies. These data suggest that Gal-3 decreased Prx-4 antioxidant system in cardiac fibroblasts, increasing oxidative stress. In pathological models presenting enhanced cardiac Gal-3, the decrease in Prx-4 expression paralleled increased oxidative stress. Gal-3 blockade restored Prx-4 expression and improved oxidative stress status. In AS, circulating levels of Gal-3 could reflect oxidative stress. The alteration of the balance between antioxidant systems and reactive oxygen species production could be a new pathogenic mechanism by which Gal-3 induces cardiac damage in HF.

9.
Int J Cardiol ; 258: 217-223, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544935

RESUMO

AIMS: Galectin-3 (Gal-3), a ß-galactoside-binding lectin involved in cardiac inflammation and fibrosis, could regulate oxidative stress, although the mechanisms have not been elucidated. We herein investigated the changes in oxidative stress-related mediators induced by Gal-3 in human cardiac fibroblasts and in pathological animal and human models of cardiac diseases. RESULTS: Using quantitative proteomics and immunodetection approaches, we have identified that Gal-3 down-regulated fumarate hydratase (FH) in human cardiac fibroblasts. In parallel, Gal-3 increased fumarate production in a time-dependent manner. Gal-3 treatment enhanced carbonylated proteins detected through OxyBlot technique. Interestingly, treatment of cells with fumarate induced oxidative stress, enhanced fibroblast activation markers and increased collagen and interleukin-6 secretion. In Gal-3-silenced cells and in heart from Gal-3 knock-out mice, FH was increased and fumarate was decreased. In myocardial biopsies from patients with aortic stenosis (AS, n=26), FH levels were decreased as compared to Controls (n=13). Cardiac Gal-3 inversely correlated with FH levels in myocardial biopsies. In an experimental model of AS rats, pharmacological inhibition of Gal-3 restored cardiac FH, decreased fumarate concentration and improved oxidative status. CONCLUSION: In human cardiac fibroblasts, Gal-3 decreased FH expression increasing fumarate concentration and promoting oxidative stress. In human AS, cardiac levels of Gal-3 inversely associated with FH. Gal-3 blockade restored FH and improved fumarate and oxidative stress status in AS rats. FH is therefore a key molecule mediating Gal-3-induced oxidative stress in cardiac cells.


Assuntos
Fibroblastos/metabolismo , Fumarato Hidratase/fisiologia , Galectina 3/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/fisiologia , Animais , Células Cultivadas , Fibroblastos/patologia , Galectina 3/deficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Ratos , Ratos Wistar
10.
Circ Res ; 122(7): e49-e61, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29467196

RESUMO

RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.

11.
Dis Model Mech ; 11(2)2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29361517

RESUMO

Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is, at least partially, acting on mitochondrial damage. Gal-3 inhibition in rats that were fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1, and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration, mainly due to an increase in the proton leak, glycolysis, oxidative stress, ß-oxidation and reduced mitochondrial membrane potential. Inhibition of Gal-3 activity was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and lysophosphatidyl choline (LPC) levels. These reductions were accompanied by amelioration of the mitochondrial damage observed in HFD rats, although no improvement was observed regarding insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.


Assuntos
Galectina 3/antagonistas & inibidores , Coração/efeitos dos fármacos , Lipídeos/toxicidade , Obesidade/patologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Fibrose , Fluordesoxiglucose F18/química , Galectina 3/metabolismo , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Coração/diagnóstico por imagem , Coração/fisiopatologia , Resistência à Insulina , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos Wistar , Superóxidos/metabolismo
12.
J Mol Cell Cardiol ; 115: 32-38, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29289651

RESUMO

Immune system activation is involved in cardiovascular (CV) inflammation and fibrosis, following activation of the mineralocorticoid receptor (MR). We previously showed that Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a novel target of MR signaling in CV tissue and plays a critical role in aldosterone/MR-dependent hypertension and fibrosis. We hypothesized that the production of NGAL by immune cells may play an important part in the mediation of these deleterious mineralocorticoid-induced effects. We analyzed the effect of aldosterone on immune cell recruitment and NGAL expression in vivo. We then studied the role of NGAL produced by immune cells in aldosterone-mediated cardiac inflammation and remodeling using mice depleted for NGAL in their immune cells by bone marrow transplantation and subjected to mineralocorticoid challenge NAS (Nephrectomy, Aldosterone 200µg/kg/day, Salt 1%). NAS treatment induced the recruitment of various immune cell populations to lymph nodes (granulocytes, B lymphocytes, activated CD8+ T lymphocytes) and the induction of NGAL expression in macrophages, dendritic cells, and PBMCs. Mice depleted for NGAL in their immune cells were protected against NAS-induced cardiac remodeling and inflammation. We conclude that NGAL produced by immune cells plays a pivotal role in cardiac damage under mineralocorticoid excess. Our data further stressed a pathogenic role of NGAL in cardiac damages, besides its relevance as a biomarker of renal injury.

13.
J Hypertens ; 36(2): 368-376, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28858976

RESUMO

BACKGROUND: The pharmacological blockade of galectin-3 (Gal-3), a ß-galactoside-binding lectin, reduces renal impairment in acute kidney injury, hyperaldosteronism or nephropathy. We herein investigated the effects of pharmacological Gal-3 inhibition by modified citrus pectin (MCP) in renal damage in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS: Gal-3 inhibition did not modify blood pressure levels in 30-week-old SHR. Kidney weight was higher in SHR, with no effect of MCP treatment (100 mg/kg/day in the drinking water). Plasma creatinine and albuminuria were slightly but significantly increased in SHR and reduced by MCP, as well as plasma and urinary neutrophil gelatinase-associated lipocalin. In kidney from SHR, Gal-3 was upregulated, as well as the fibrotic markers (collagen type I, TGF-ß and connective tissue growth factor) and tubulointerstitial fibrosis. MCP treatment reduced Gal-3 levels and fibrosis. The epithelial-mesenchymal transition (EMT) molecules (fibronectin, α-smooth muscle actin and ß-catenin) were modified in SHR and normalized by Gal-3 inhibition. The inflammatory mediators (monocyte chemoattractant protein-1, osteopontin, cd68, cd80, cd44 and cd45) were elevated in SHR and attenuated by MCP. Renal damage markers (neutrophil gelatinase-associated lipocalin and kidney injury molecule-1) were augmented in SHR and improved by MCP. In renal epithelial normal rat kidney-52E cells, Gal-3 treatment induced EMT markers, whereas Gal-3 silencing attenuated EMT. CONCLUSION: Gal-3 inhibition attenuated early renal damage in SHR as indicated by reduced albuminuria, improved renal function and decreased renal fibrosis, EMT and inflammation, independently of blood pressure levels. These data suggest that Gal-3 could be a potential therapeutic candidate for the prevention of early renal alterations in hypertension.

14.
Sci Rep ; 7(1): 16802, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196758

RESUMO

We have investigated whether mineralocorticoid receptor activation can participate in the profibrotic effects of leptin in cardiac myofibroblasts, as well as the potential mechanisms involved. The presence of eplerenone reduced the leptin-induced increase in protein levels of collagen I, transforming growth factor ß, connective tissue growth factor and galectin-3 and the levels of both total and mitochondrial of superoxide anion (O2.-) in cardiac myofibroblasts. Likewise, the MEK/ERK inhibitor, PD98059, and the PI3/Akt inhibitor, LY294002, showed a similar pattern. Mitochondrial reactive oxygen species (ROS) scavenger (MitoTempo) attenuated the increase in body weight observed in rats fed a high fat diet (HFD). No differences were found in cardiac function or blood pressure among any group. However, the cardiac fibrosis and enhanced O2.-levels observed in HFD rats were attenuated by MitoTempo, which also prevented the increased circulating leptin and aldosterone levels in HFD fed animals. This study supports a role of mineralocorticoid receptor in the cardiac fibrosis induced by leptin in the context of obesity and highlights the role of the mitochondrial ROS in this process.

15.
Hypertension ; 70(6): 1148-1156, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29061727

RESUMO

Myocardial infarction (MI) is accompanied by cardiac fibrosis, which contributes to cardiac dysfunction. Mineralocorticoid receptor (MR) antagonists have beneficial effects in patients with left ventricular (LV) dysfunction after MI. We herein investigated the role of the MR target NGAL (neutrophil gelatinase-associated lipocalin) in post-MI cardiac damages. Both higher baseline NGAL and a greater increase in serum NGAL levels during follow-up were significantly associated with lower 6-month LV ejection fraction recovery in a cohort of 119 post-MI patients, as assessed by cardiac magnetic resonance imaging. NGAL protein levels increased in the LV at 7 days post-MI in wild-type mice with MI. This effect was prevented by treatment with the nonsteroidal MR antagonist finerenone (1 mg/kg per day). NGAL knockout mice with MI had lower LV interstitial fibrosis and inflammation, better LV contractility and compliance, and greater stroke volume and cardiac output than wild-type mice with MI at 3 months post-MI. Aldosterone (10-8 mol/L) increased NGAL expression in cultured human cardiac fibroblasts. Cells treated with aldosterone or NGAL (500 ng/mL) showed increased production of collagen type I. The effects of aldosterone were abolished by finerenone (10-6 mol/L) or NGAL knockdown. This NGAL-mediated activity relied on NFκB (nuclear factor-κB) activation, confirmed by the use of the NFκB-specific inhibitor BAY11-7082, which prevented the effect of both aldosterone and NGAL on collagen type I production. In conclusion, NGAL, a downstream MR activation target, is a key mediator of post-MI cardiac damage. NGAL may be a potential therapeutic target in cardiovascular pathological situations in which MR is involved.


Assuntos
Aldosterona/farmacologia , Lipocalina-2/sangue , NF-kappa B/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/patologia , Naftiridinas/farmacologia , Nitrilos/farmacologia , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Sulfonas/farmacologia , Fatores de Tempo
16.
Clin Sci (Lond) ; 131(22): 2707-2719, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28982723

RESUMO

Abdominal aortic aneurysm (AAA) evolution is unpredictable and no specific treatment exists for AAA, except surgery to prevent aortic rupture. Galectin-3 has been previously associated with CVD, but its potential role in AAA has not been addressed. Galectin-3 levels were increased in the plasma of AAA patients (n=225) compared with the control group (n=100). In addition, galectin-3 concentrations were associated with the need for surgical repair, independently of potential confounding factors. Galectin-3 mRNA and protein expression were increased in human AAA samples compared with healthy aortas. Experimental AAA in mice was induced via aortic elastase perfusion. Mice were treated intravenously with the galectin-3 inhibitor modified citrus pectin (MCP, 10 mg/kg, every other day) or saline. Similar to humans, galectin-3 serum and aortic mRNA levels were also increased in elastase-induced AAA mice compared with control mice. Mice treated with MCP showed decreased aortic dilation, as well as elastin degradation, vascular smooth muscle cell (VSMC) loss, and macrophage content at day 14 postelastase perfusion compared with control mice. The underlying mechanism(s) of the protective effect of MCP was associated with a decrease in galectin-3 and cytokine (mainly CCL5) mRNA and protein expression. Interestingly, galectin-3 induced CCL5 expression by a mechanism involving STAT3 activation in VSMC. Accordingly, MCP treatment decreased STAT3 phosphorylation in elastase-induced AAA. In conclusion, increased galectin-3 levels are associated with AAA progression, while galectin-3 inhibition decreased experimental AAA development. Our data suggest the potential role of galectin-3 as a therapeutic target in AAA.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Galectina 3/antagonistas & inibidores , Galectina 3/sangue , Elastase Pancreática , Pectinas/farmacologia , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/sangue , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/patologia , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação , RNA Mensageiro/sangue , RNA Mensageiro/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima
17.
Sci Rep ; 7(1): 12192, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939891

RESUMO

Cardiac fibrosis is characterized by an excessive accumulation of extracellular matrix components, including collagens. Galectin-3 (Gal-3) and Cardiotrophin-1 (CT-1) are two profibrotic molecules that mediate Aldosterone (Aldo)-induced cardiac fibrosis. However the underlying mechanisms are not well defined. Our aim is to characterize changes in the proteome of human cardiac fibroblasts treated with Aldo, Gal-3 or CT-1 to identify new common proteins that might be new therapeutic targets in cardiac fibrosis. Using a quantitative proteomic approach in human cardiac fibroblasts, our results show that Aldo, Gal-3 and CT-1 modified the expression of 30, 17 and 89 proteins respectively, being common the reticulocalbin (RCN) family members. RCN-3 down-regulation triggered by Aldo, Gal-3 and CT-1 was verified. Treatment with recombinant RCN-3 decreased collagens expression in human cardiac fibroblasts through Akt phosphorylation. Interestingly, CRISPR/Cas9-mediated activation of RCN-3 decreased collagen production in human cardiac fibroblasts. In addition, recombinant RCN-3 blocked the profibrotic effects of Aldo, Gal-3 and CT-1. Interestingly, RCN-3 blunted the increase in collagens expression induced by other profibrotic stimuli, angiotensin II, in human cardiac fibroblasts. Our results suggest that RCN-3 emerges as a new potential negative regulator of collagen production and could represent a therapeutic target in the context of cardiac fibrosis.

18.
Int J Mol Sci ; 18(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758988

RESUMO

Galectin-3 (Gal-3) is involved in cardiovascular fibrosis and aortic valve (AV) calcification. We hypothesized that Gal-3 pharmacological inhibition with modified citrus pectin (MCP) could reduce aortic and AV remodeling in normotensive rats with pressure overload (PO). Six weeks after aortic constriction, vascular Gal-3 expression was up-regulated in male Wistar rats. Gal-3 overexpression was accompanied by an increase in the aortic media layer thickness, enhanced total collagen, and augmented expression of fibrotic mediators. Further, vascular inflammatory markers as well as inflammatory cells content were greater in aorta from PO rats. MCP treatment (100 mg/kg/day) prevented the increase in Gal-3, media thickness, fibrosis, and inflammation in the aorta of PO rats. Gal-3 levels were higher in AVs from PO rats. This paralleled enhanced AV fibrosis, inflammation, as well as greater expression of calcification markers. MCP treatment prevented the increase in Gal-3 as well as fibrosis, inflammation, and calcification in AVs. Overall, Gal-3 is overexpressed in aorta and AVs from PO rats. Gal-3 pharmacological inhibition blocks aortic and AV remodeling in experimental PO. Gal-3 could be a new therapeutic approach to delay the progression and the development of aortic remodeling and AV calcification in PO.


Assuntos
Aorta , Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Galectina 3 , Regulação da Expressão Gênica/efeitos dos fármacos , Pectinas/farmacologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/metabolismo , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Estenose da Valva Aórtica/fisiopatologia , Calcinose/metabolismo , Calcinose/patologia , Calcinose/fisiopatologia , Modelos Animais de Doenças , Galectina 3/antagonistas & inibidores , Galectina 3/biossíntese , Masculino , Ratos , Ratos Wistar
19.
J Proteomics ; 166: 93-100, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28739510

RESUMO

Aldosterone (Aldo) could induce cardiac fibrosis, a hallmark of heart disease. Aldo direct effects on collagen production in cardiac fibroblasts remain controversial. Our aim is to characterize changes in the proteome of adult human cardiac fibroblasts treated with Aldo to identify new proteins altered that might be new therapeutic targets in cardiovascular diseases. Aldo increased collagens expressions in human cardiac fibroblasts. Complementary, using a quantitative proteomic approach, 30 proteins were found differentially expressed between control and Aldo-treated cardiac fibroblasts. Among these proteins, 7 were up-regulated and 23 were down-regulated by Aldo. From the up-regulated proteins, collagen type I, collagen type III, collagen type VI and S100-A11 were verified by Western blot. Moreover, protein interaction networks revealed a functional link between a third of Aldo-modulated proteome and specific survival routes. S100-A11 was identified as a possible link between Aldo and collagen. Interestingly, CRISPR/Cas9-mediated knock-down of S100-A11 blocked Aldo-induced collagen production in human cardiac fibroblasts. In adult human cardiac fibroblasts treated with Aldo, proteomic analyses revealed an increase in collagen production. S100-A11 was identified as a new regulator of Aldo-induced collagen production in human cardiac fibroblasts. These data could identify new candidate proteins for the treatment of cardiac fibrosis in cardiovascular diseases. SIGNIFICANCE: S100-A11 is identified by a proteomic approach as a novel regulator of Aldosterone-induced collagen production in human cardiac fibroblasts. Our data could identify new candidate proteins of interest for the treatment of cardiac fibrosis in cardiovascular diseases.


Assuntos
Aldosterona/farmacologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Proteínas S100/fisiologia , Células Cultivadas , Colágeno/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miocárdio/patologia , Proteômica/métodos
20.
Clin Sci (Lond) ; 131(10): 935-949, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360193

RESUMO

Aortic stenosis (AS) is characterized by pressure overload and causes left ventricular (LV) fibrosis and inflammation, two mechanisms that eventually lead to cardiac dysfunction. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, promotes cardiac remodelling. In the present study, we investigated the role of Gal-3 in LV remodelling in patients with AS and the effects of Gal-3 blockade in rats subjected to short-term (6-week) supravalvular aortic banding (AS group). Myocardial biopsies were obtained from 25 patients with severe AS referred for aortic valve replacement and from necropsies of 11 cardiovascular disease-free control individuals. Gal-3 was up-regulated in myocardial biopsies from AS patients compared with controls. Gal-3 directly correlated with parameters assessing myocardial fibrosis and inflammation in AS patients. Normotensive AS animals presented decreased LV diastolic diameter compared with controls. At the histological level, AS rats exhibited a slight increase in LV cross-sectional area and LV wall thickness, and augmented cardiomyocyte width and cross-sectional area. AS animals presented enhanced cardiac Gal-3 expression, which paralleled higher myocardial fibrosis and inflammation. Cardiac Gal-3 was associated with fibrosis and inflammatory markers. Gal-3 pharmacological inhibition prevented the increase in cardiac Gal-3 and normalized histological and molecular alterations in AS rats. In short-term AS, the increase in myocardial Gal-3 expression was associated with cardiac fibrosis and inflammation, alterations that were prevented by Gal-3 blockade. These data suggest that Gal-3 inhibition could be a novel therapeutic approach in the prevention of AS-associated early pathological cardiac remodelling.


Assuntos
Estenose da Valva Aórtica/metabolismo , Galectina 3/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/fisiopatologia , Modelos Animais de Doenças , Feminino , Galectina 3/genética , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Gravidez , Ratos , Ratos Wistar , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA