Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Am Chem Soc ; 142(16): 7690-7698, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32208693


By a precise metallo-ligand design, the advanced coordination-driven self-assembly could succeed in the preparation of giant molecular weight of the metallo-architectures. However, the synthesis of a single discrete high-molecular-weight (>100 K Da) structure has not been demonstrated due to the insurmountable synthetic challenge. Herein, we present a two-dimensional wheel structure (W1) and a gigantic three-dimensional dodecagonal prism-like architecture (P1), which were generated by multicomponent self-assembly of two similar metallo-organic ligands and a core ligand with metal ions, respectively. The giant 2D-suprastructure W1 with six hexagonal metallacycles that fused to the central spoke wheel was first achieved in nearly quantitative yield, and then, directed by introducing a meta-substituted coordination site into the key ligand, the supercharged (36 Ru2+ and 48 Cd2+ ions) double-decker prismatic structure P1 with two wheel structure W1s serve as the surfaces and 12 connectivities serve as the edges, where a molecular weight up to 119 498.18 Da was accomplished. The expected molecular composition and size morphology was unequivocally characterized by nuclear magnetic resonance, mass spectrometry, and transmission electron microscopy investigations. The introduction of a wheel structure is able to add considerable stability and complexity to the final architecture. These well-defined scaffolds are expected to play an important role in the functional materials field, such as molecular encapsulation and medicine sustained release.

Biomater Sci ; 8(7): 1830-1839, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32057056


The development of highly effective and minimally invasive approaches for cancer treatment is the ultimate goal. Herein, an injectable hybrid hydrogel as a biomimetic cascade bioreactor is designed for combination antitumor therapy by providing spatiotemporally-controlled and long-term delivery of therapeutic agents. This hybrid nanozyme@hydrogel (hPB@gellan) is doped with Prussian blue (PB) nanoparticles via the in situ nanoprecipitation method in the polysaccharide gellan matrix. The obtained PB nanoparticles have a small size of 10 nm and play dual roles as a photothermal agent with a photothermal conversion efficiency of 59.6% and as a nanozyme to decompose hydrogen peroxide into oxygen. By incorporating glucose oxidase (GOD) into the hybrid hydrogel, a cascade bioreactor is formed for PB-promoted glucose consumption. Owing to its shear-thinning and self-recovery properties, the hybrid hydrogel is locally administered into tumors, and shows long-term resistance against body clearance and metabolism. The in vivo antitumor results demonstrate that the tumors in the group of combined photothermal and starvation therapy (GOD/hPB@gellan + NIR) are greatly eliminated with a tumor suppression rate of 99.7% 22 days after the treatment. The outstanding antitumor performance is attributed to the main attack by NIR-triggered hyperthermia and the holding attack by GOD-mediated starvation from the catalytic bioreactor of the hybrid hydrogel. Taking into consideration the advantages of biosafety, simple synthetic approaches and facile manipulation in treatment, the hybrid hydrogel has great potential for clinical translation.

Chem Commun (Camb) ; 55(58): 8422-8425, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31257398


A tough double-network (DN) organohydrogel, obtained by simply soaking a poly(2-acrylamido-2-methylpropane sulfonic acid)/polyacrylamide (PAMPS/PAAm) hydrogel in an ethylene glycol solution of lithium chloride, retains high mechanical performance, flexibility (-80 to 120 °C) and conductivity (-20 to 120 °C), paving the way towards broad applications.