Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 5, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33441133

RESUMO

BACKGROUND: Viruses are ubiquitous biological entities, estimated to be the largest reservoirs of unexplored genetic diversity on Earth. Full functional characterization and annotation of newly discovered viruses requires tools to enable taxonomic assignment, the range of hosts, and biological properties of the virus. Here we focus on prokaryotic viruses, which include phages and archaeal viruses, and for which identifying the viral host is an essential step in characterizing the virus, as the virus relies on the host for survival. Currently, the method for determining the viral host is either to culture the virus, which is low-throughput, time-consuming, and expensive, or to computationally predict the viral hosts, which needs improvements at both accuracy and usability. Here we develop a Gaussian model to predict hosts for prokaryotic viruses with better performances than previous computational methods. RESULTS: We present here Prokaryotic virus Host Predictor (PHP), a software tool using a Gaussian model, to predict hosts for prokaryotic viruses using the differences of k-mer frequencies between viral and host genomic sequences as features. PHP gave a host prediction accuracy of 34% (genus level) on the VirHostMatcher benchmark dataset and a host prediction accuracy of 35% (genus level) on a new dataset containing 671 viruses and 60,105 prokaryotic genomes. The prediction accuracy exceeded that of two alignment-free methods (VirHostMatcher and WIsH, 28-34%, genus level). PHP also outperformed these two alignment-free methods much (24-38% vs 18-20%, genus level) when predicting hosts for prokaryotic viruses which cannot be predicted by the BLAST-based or the CRISPR-spacer-based methods alone. Requiring a minimal score for making predictions (thresholding) and taking the consensus of the top 30 predictions further improved the host prediction accuracy of PHP. CONCLUSIONS: The Prokaryotic virus Host Predictor software tool provides an intuitive and user-friendly API for the Gaussian model described herein. This work will facilitate the rapid identification of hosts for newly identified prokaryotic viruses in metagenomic studies.

2.
Development ; 148(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33318149

RESUMO

Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3ß, leading to reduced levels of ß-catenin and Snai1: two GSK3ß substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.

3.
Brief Bioinform ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349124

RESUMO

Circular RNAs (circRNAs) are covalently closed long noncoding RNAs critical in diverse cellular activities and multiple human diseases. Several cancer-related viral circRNAs have been identified in double-stranded DNA viruses (dsDNA), yet no systematic study about the viral circRNAs has been reported. Herein, we have performed a systematic survey of 11 924 circRNAs from 23 viral species by computational prediction of viral circRNAs from viral-infection-related RNA sequencing data. Besides the dsDNA viruses, our study has also revealed lots of circRNAs in single-stranded RNA viruses and retro-transcribing viruses, such as the Zika virus, the Influenza A virus, the Zaire ebolavirus, and the Human immunodeficiency virus 1. Most viral circRNAs had reverse complementary sequences or repeated sequences at the flanking sequences of the back-splice sites. Most viral circRNAs only expressed in a specific cell line or tissue in a specific species. Functional enrichment analysis indicated that the viral circRNAs from dsDNA viruses were involved in KEGG pathways associated with cancer. All viral circRNAs presented in the current study were stored and organized in VirusCircBase, which is freely available at http://www.computationalbiology.cn/ViruscircBase/home.html and is the first virus circRNA database. VirusCircBase forms the fundamental atlas for the further exploration and investigation of viral circRNAs in the context of public health.

4.
Bioinformatics ; 36(10): 3251-3253, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049310

RESUMO

MOTIVATION: Newly emerging influenza viruses keep challenging global public health. To evaluate the potential risk of the viruses, it is critical to rapidly determine the phenotypes of the viruses, including the antigenicity, host, virulence and drug resistance. RESULTS: Here, we built FluPhenotype, a one-stop platform to rapidly determinate the phenotypes of the influenza A viruses. The input of FluPhenotype is the complete or partial genomic/protein sequences of the influenza A viruses. The output presents five types of information about the viruses: (i) sequence annotation including the gene and protein names as well as the open reading frames, (ii) potential hosts and human-adaptation-associated amino acid markers, (iii) antigenic and genetic relationships with the vaccine strains of different HA subtypes, (iv) mammalian virulence-related amino acid markers and (v) drug resistance-related amino acid markers. FluPhenotype will be a useful bioinformatic tool for surveillance and early warnings of the newly emerging influenza A viruses. AVAILABILITY AND IMPLEMENTATION: It is publicly available from: http://www.computationalbiology.cn : 18888/IVEW. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Sequência de Aminoácidos , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A/genética
5.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534045

RESUMO

Type A and type B influenza viruses (FluA and FluB viruses) are two major human pathogens that share common structural and functional features. FluA and FluB viruses can reassort within each type but never between the types. Here, we bioinformatically analyzed all promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. We then studied the promoter elements with cell-based in vivo assays and an in vitro replication initiation assay. Our results identified, for the first time, a type-specific promoter element-the nucleotide at position 5 in the 3' end of the viral RNA (vRNA)-that plays a key role(s) in modulating polymerase activity in a type-specific manner. Interestingly, swapping the promoter element between FluA and FluB recombinant viruses showed different tolerances: the replacement of FluA virus-specific U5 with FluB virus-specific C5 in influenza virus A/WSN/33 (H1N1) could be reverted to U5 after 2 to 3 passages, while the replacement of FluB virus-specific C5 with FluA virus-specific U5 in influenza virus B/Yamagata/88 could be maintained, but with significantly reduced replication efficiency. Therefore, our findings indicate that the nucleotide variation at position 5 in the 3' end of the vRNA promoter between FluA and FluB viruses contributes to their RNP incompatibility, which may shed new light on the mechanisms of intertypic exclusion of reassortment between FluA and FluB viruses.IMPORTANCE Genetic reassortment of influenza virus plays a key role in virus evolution and the emergence of pandemic strains. The reassortment occurs extensively within either FluA or FluB viruses but never between them. Here, we bioinformatically compared available promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. Our in vivo and in vitro mutagenesis studies showed that a type-specific promoter element-the nucleotide at position 5 in the 3' end of vRNA promoters-plays key roles in modulating polymerase activity. Interestingly, FluA and FluB viruses showed different tolerances upon key promoter element swapping in the context of virus infections. We concluded that the nucleotide at position 5 in the 3' end of the vRNA promoters of FluA and FluB viruses is a critical type-specific determinant. This work has implications for further elucidating the mechanisms of the intertypic exclusion of reassortment between FluA and FluB viruses.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , RNA Viral/genética , Sequência de Bases , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Mutação , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Proteínas Virais/genética , Replicação Viral
6.
Vet Microbiol ; 236: 108380, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31500735

RESUMO

The African swine fever virus (ASFV) has severely influenced the swine industry of the world. Currently, there is no effective vaccine or drugs against the ASFV. How to effectively control the virus is challenging. In this study, we have analyzed all the publicly available ASFV genomes and demonstrated that there was a large genetic diversity of ASFV genomes. Interestingly, the genetic diversity was mainly caused by extensive genomic insertions and/or deletions (indels) instead of the point mutations. Further analyses showed that the indels may be attributed much to the homologous recombination, as supported by significant associations between the occurrence of extensive recombination events and the indels in the ASFV genomes. Besides, the homologous recombination also led to changes of gene content of ASFVs. Finally, repeated elements of dozens of nucleotides in length were observed to widely distribute and cluster in the adjacent positions of ASFV genomes, which may facilitate the occurrence of homologous recombination. This work highlighted the importance of homologous recombination in shaping the genetic diversity of the ASFVs, and could help understand the evolution of the virus.


Assuntos
Vírus da Febre Suína Africana/genética , Variação Genética , Vírus Reordenados/genética , DNA Viral/genética , Genoma Viral
7.
Transbound Emerg Dis ; 66(6): 2517-2522, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31373773

RESUMO

Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate human-infecting viruses from other viruses based on the frequency of k-mers in the viral genomic sequences. The k-nearest neighbor (KNN) model can predict the human-infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel human-infecting viruses in viral metagenomics studies.


Assuntos
Genoma Viral , Vírus/genética , Animais , Sangue/virologia , Análise por Conglomerados , DNA Viral/sangue , Humanos , Aprendizado de Máquina , Metagenômica
9.
Zhongguo Zhong Yao Za Zhi ; 41(8): 1415-1421, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28884532

RESUMO

There is distinctive advantage of using male sterile lines to breed new cultivar and produce hybrids, when compared with general breeding method on yield and quality. In our previous work, near-isogenic lines (NILs) of male sterile and fertile Salvia miltiorrhiza have been obtained through continuous hybridization in many years. In this investigation, 378 primer combination were screened by using AFLP and BSA technique, in which 26 markers amplified from seven primers were found to tightly link to male sterile gene. Based on these markers, two linkage genetic maps were constructed. A 2 027,2 028 bp fragment was amplifed from NILs of fertile and sterile S. miltiorrhiza, respectively, using genome walking technique and previous E11/M4-208 marker as template. Four base mutations were found in intron when comparing both fragments. Among all different markers between NILs of male sterile and fertile S. miltiorrhiza, four was found to have 100% identities to chromosome 1, 3 and 5 of Arabidopsis, namely, E01/M09-418, E05/M13-308, E05/M04-750 and E01/M01-204. The E01/M09-418 marker was very close to male sterile gene of S. miltiorrhiza with distance of 2.1 cM, which also had 100% identities to male sterile gene MS2 in Arabidopsis. Both were distributed in chromosome 3 of Arabidopsis. The 2 028 bp fragment also had 100% identities to MS2 gene. Another E05/M04-750 marker that had 100% identities to chromosome 5 of Arabidopsis was found to have high identities to POP085-M05 gene of poplars and low affinity calcium antiporter CAX2 of Arabidopsis with very low E-value. The constructed genetic map and differential fragments with potential functions found in this study provide a solid foundation to lock male sterile genes in S. miltiorrhiza genome and to discover their functions.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Genes de Plantas , Infertilidade das Plantas , Salvia miltiorrhiza/genética , Mutação , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA