Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 187(6): 325, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399626

RESUMO

A facile and sensitive self-powered cathodic photoelectrochemical (PEC) aptasensor is reported for the detection of prostate-specific antigen (PSA) based on CuO-Cu2O nanowire array grown on Cu mesh (CuO-Cu2O NWA/CM) as electrode. The mixed narrow band gaps of the CuO-Cu2O heterostructure ensured its wide absorption band, effective electron/hole separation, and high photocatalytic activity in the visible region. In addition, nanowires directly grown on the substrate provided high specific surface area and exposed abundant active sites, thus guaranteeing its high photocatalytic efficiency. Therefore, the self-powered sensor exhibited favorable analytical performance with fast response, wide linear ranges of 0.01 to 5 ng/mL and 5 to 100 ng/mL, an acceptable detection limit of 3 pg/mL, and reasonable selectivity and stability. The proposed CuO-Cu2O NWA/CM can be considered a promising visible light-responsive photoactive material for fabrication of PEC aptasensor with high performance. Graphical abstract a Schematic illustration of construction process of PEC sensing platform based on the CuO-Cu2O composite for PSA detection. b Schematic mechanism of the operating PEC system.

2.
Talanta ; 215: 120891, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312436

RESUMO

A novel electrochemical sensor was constructed based on three-dimensional NiO@Ni-MOF nanoarrays modified Ti mesh (NiO@Ni-MOF/TM). NiO nanoarrays were firstly produced on conductive TM using hydrothermal and carbonization method, and then Ni-MOFs were directly grown on the surface of NiO nanoarrays through self-template strategy. The morphology and structure of the prepared materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The as-prepared NiO@Ni-MOF/TM was used as electrochemical sensor for investigating electrochemical behaviors of luteolin flavonoid. The composite electrode combined the excellent enrichment ability of Ni-MOF, high catalysis of NiO nanoarrays with the superior electronic conductivity of TM substrate, enabling ultra-sensitive detection towards luteolin with a low limit of detection (LOD) of 3 pM (S/N = 3). Besides, with favorable stability and selectivity, the fabricated sensor was applied in the determination of luteolin in actual samples with satisfactory results.

3.
Mikrochim Acta ; 187(5): 258, 2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248309

RESUMO

Flower-like graphene/CuO@Cu-BTC (GR/CuO@Cu-BTC) composite was employed as electrode material for the voltammetric determination of caffeic acid (CA) in the wine. The composite material was prepared via the self-template method. In this synthetic process, budlike CuO not only acts as the template, but also provides Cu2+ ions for in situ growth of the Cu-BTC shell. The utilization of GR as petal greatly boosts the stability and electronic conductivity of CuO@Cu-BTC. The GR/CuO@Cu-BTC composite possesses unique structural features with high specific surface area and good conductivity, exhibiting excellent electrocatalytic activity towards the oxidation of CA. Under optimized conditions, the sensor shows a good linear response to CA concentration over the range 0.020-10.0 µM, together with a low limit of detection (LOD) of 7.0 nM. Selectivity, reproducibility, and stability were investigated, and the method has been applied for the determination of CA in wine samples. Graphical abstract Schematic representation of electrochemical sensor for the detection of caffeic acid was designed based on flower-like graphene/copper oxide@copper(II) metal-organic framework (GR/CuO@Cu-BTC) composite electrode material.

4.
J Hazard Mater ; 396: 122776, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32334288

RESUMO

Pesticides play an important role in agricultural fields, but the pesticide residues pose strong hazardous to human health, thus designing sensitive and fast method for pesticides monitor is highly urgent. Herein, nanoarchitecture of Mxene/carbon nanohorns/ß-cyclodextrin-Metal-organic frameworks (MXene/CNHs/ß-CD-MOFs) was exploited as electrochemical sensing platform for carbendazim (CBZ) pesticide determination. ß-CD-MOFs combined the properties of host-guest recognition of ß-CD and porous structure, high porosity and pore volume of MOFs, enabling high adsorption capacity for CBZ. MXene/CNHs possessed large specific surface area, plenty of available active sites, high conductivity, which afforded more mass transport channels and enhances the mass transfer capacity and catalysis for CBZ. With the synergistic effect of MXene/CNHs and ß-CD-MOFs, the MXene/CNHs/ß-CD-MOFs electrode extended a wide linear range from 3.0 nM to 10.0 µM and a low limit of detection (LOD) of 1.0 nM (S/N = 3). Additionally, the prepared sensor also demonstrated high selectivity, reproducibility and long-term stability, and satisfactory applicability in tomato samples.

5.
Int J Biol Sci ; 16(7): 1166-1179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174792

RESUMO

Carbon tetrachloride (CCl4), Concanavalin A (ConA), bile duct ligation (BDL), and liver resection (LR) are four types of commonly used mouse models of acute liver injury. However, these four models belong to different types of liver cell damage while their application situations are often confounded. In addition, the systematic changes of multiple extra-liver organs after acute liver injury and the crosstalk between liver and extra-liver organs remain unclear. Here, we aim to map the morphological, metabolomic and transcriptomic changes systematically after acute liver injury and search for the potential crosstalk between the liver and the extra-liver organs. Significant changes of transcriptome were observed in multiple extra-liver organs after different types of acute liver injury despite dramatic morphological damage only occurred in lung tissues of the ConA/BDL models and spleen tissues in the ConA model. Liver transcriptomic changes initiated the serum metabolomic alterations which correlated to transcriptomic variation in lung, kidney, and brain tissues of BDL and LR models. The potential crosstalk might lead to pulmonary damage and development of hepatorenal syndrome (HRS) and hepatic encephalopathy (HE) during liver injury. Serum derived from acute liver injury mice damaged alveolar epithelial cells and human podocytes in vitro. Our data indicated that different types of acute liver injury led to different transcriptomic changes within extra-liver organs. Integration of serum metabolomics and transcriptomics from multiple tissues can improve our understanding of acute liver injury and its effect on the other organs.

6.
J Mol Med (Berl) ; 98(4): 527-540, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32036390

RESUMO

Progressive tubulointerstitial fibrosis is the common final outcome for all kidney diseases evolving into chronic kidney disease (CKD), whereas molecular mechanisms driving fibrogenesis remain elusive. Retinoic acid-inducible gene-I (RIG-I), an intracellular pattern recognition receptor, is originally identified participating in immune response by recognizing virus RNA. Here, we revealed for the first time that RIG-I was induced in unilateral ureteral obstruction (UUO) and folic acid (FA) renal fibrosis models and moderate-degree renal fibrosis patients. Besides, we found RIG-I was mainly located in renal tubular epithelial cells and promoted the production and release of inflammatory cytokines, such as interleukin (IL)-1ß and IL-6 through activation of NF-κB. Inflammatory cytokines released by tubular epithelial cells activated c-Myc-mediated TGF-ß/Smad signaling in fibroblasts, which in turn aggravated interstitial fibrosis by promoting fibroblast activation and production of extracellular matrix components (ECM). Deficiency of RIG-I attenuated renal fibrosis by the regulation of inflammatory responses, c-Myc expression, and fibroblast activation. Besides, gene silencing of RIG-I reduced inflammatory cytokines in cultured tubular epithelial cells treated with Angiotensin II. Knockdown of c-Myc or c-Myc inhibitor blocked IL-1ß-induced fibroblast activation. Collectively, our study demonstrates that RIG-I plays a significant role in the progress of renal fibrosis via regulating c-Myc-mediated fibroblast activation. KEY MESSAGES: • RIG-I was constantly elevated in kidneys from renal fibrotic mice. • RIG-I facilitated inflammatory cytokine production in tubular epithelial cells. • RIG-I aggravated renal fibrosis via c-Myc-mediated TGF-ß/Smad activation.

7.
Anal Bioanal Chem ; 412(6): 1317-1324, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927600

RESUMO

Herein, a dual-emission metal-organic framework based ratiometric fluorescence nanoprobe was reported for detecting copper(II) ions. In particular, carbon dots (CDs) and gold nanoclusters (AuNCs) were embedded into ZIF-8 (one of the classical metal-organic frameworks) to form CDs/AuNCs@ZIF-8 nanocomposites, which exhibited dual-emission peaks at UV excitation. In the presence of Cu2+, the fluorescence attributed to AuNCs can be rapidly quenched, while the fluorescence of CDs serves as reference with undetectable changes. Therefore, the CDs/AuNCs@ZIF-8 nanocomposites were utilized as a ratiometric fluorescence nanoprobe for sensitive and selective detection of Cu2+. A good linear relationship between the ratiometric fluorescence signal of CDs/AuNCs@ZIF-8 and Cu2+ concentration was obtained in the range of 10-3-103 µM, and the detection limit was as low as 0.3324 nM. The current ratiometric fluorescence nanoprobe showed promising prospects in cost-effective and rapid determination of Cu2+ ions with good sensitivity and selectivity. Furthermore, this nanoprobe has been successfully applied for the quantitative detection of Cu2+ in serum samples, indicating its value of practical application. Graphical abstract Carbon dots (CDs) and gold nanoclusters (AuNCs) were embedded into metal-organic frameworks (ZIF-8) to form CDs/AuNCs@ZIF-8 nanocomposites, which exhibited dual-emission peaks at 365 nm excitation. In the presence of Cu2+, the fluorescence emission peak at 574 nm can rapidly respond by quenching, while the fluorescence at 462 nm serves as reference with undetectable changes.


Assuntos
Carbono/química , Cobre/análise , Ouro/química , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Pontos Quânticos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cobre/sangue , Humanos , Limite de Detecção
8.
Anal Bioanal Chem ; 412(4): 841-848, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897553

RESUMO

A sensitive photoelectrochemical (PEC) aptasensor was constructed for prostate-specific antigen (PSA) detection using an enhanced photocurrent response strategy. The p-n heterostructure CdS-Cu2O nanorod arrays were prepared on Ti mesh (CdS-Cu2O NAs/TM) by a simple hydrothermal method and successive ionic-layer adsorption reactions. Compared with the original CdS/TM, the synergistic effect of p-n type CdS-Cu2O NAs/TM and the internal electric field realizes the effective separation of photoinduced electron-hole pairs and improves the PEC performance. In order to construct the aptasensor, an amino-modified aptamer was immobilized on CdS-Cu2O NAs/TM to serve as a recognition unit for PSA. After the introduction of PSA, PSA was specifically captured by the aptamer on the PEC aptasensor, which can be oxidized by photogenerated holes to prevent electron-hole recombination and increase photocurrent. Under optimal conditions, the constructed PEC aptasensor has a linear range of 0.1-100 ng·mL-1 and a detection limit as low as 0.026 ng·mL-1. The results of aptasensor detection of human serum indicate that it has broad application prospects in biosensors and photoelectrochemical analysis.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos de Cádmio/química , Cobre/química , Nanotubos/química , Antígeno Prostático Específico/sangue , Sulfetos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Nanotubos/ultraestrutura
9.
Biosens Bioelectron ; 150: 111875, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31757562

RESUMO

An ultrasensitive photoelectrochemical (PEC) biosensor was constructed based on gold nanoparticles (Au NPs)/tungsten sulfide nanorod array (WS2 NA) photoelectrode as the PEC matrix and silver nanoparticles/flake-like zinc metal-organic framework (Ag/ZnMOF) nanozyme with the peroxidase mimetic enzyme property for sensitive detection of bleomycin (BLM). In particular, Au/WS2 and Ag/ZnMOF were linked by thiolate DNA1 and DNA2 strand, respectively, and the Au/WS2-Ag/ZnMOF probe was prepared via hybridization reaction between the two DNAs. The introduction of Ag/ZnMOF in the probe offers two functions: i) the steric hindrance effect can effectively impede electron transport and reduce the photocurrent; ii) Ag/ZnMOF nanozyme can also be used as mimic peroxidase to effectively catalyze 3,3-diaminobenzidine (DAB) to produce the relevant precipitation, which will further reduce photocurrent and eliminate false positive signals. When BLM exists, BLM with Fe2+ as irreversible cofactor can specifically recognize and cleave of the 5'-GC-3' active site of DNA2, resulting in reduced precipitation deposited on the electrode and recovery of PEC signal. The highly sensitive PEC biosensor exhibits a the linear strategy from 0.5 nM to 500 nM with a detection limit down to 0.18 nM. Further, the unique strategy was conducted in biological samples for BLM detection with satisfactory consequence, offering available and efficient pathway for disease diagnosis.

10.
Mikrochim Acta ; 186(12): 772, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31720849

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a readily available copolymer that comes as an aqueous dispersion with good processability. A flexible voltammetric sensor for the widely used food stabilizer tert.-butylhydroquinone (TBHQ) was constructed by using a film of PEDOT:PSS. The electron transfer efficiency of the electrode was enhanced by doping with dimethyl sulfoxide (DMSO), and mass transport at the electrode-electrolyte interface was increased by adding the cationic surfactant cetyltrimethylammonium bromide (CTAB) which acts as a sorbent for TBHQ. SEM, AFM, XPS, UV - vis and electrochemical analysis were conducted to characterize the properties of the electrode. After optimization of the experimental conditions, the electrode operated at a working potential of 0.17 V (vs. SCE) has a linear response in the 0.5-200 µM TBHQ concentration range and a lower detection limit of 0.15 µM (at S/N = 3). It was applied for the determination of TBHQ in spiked real samples, and recoveries ranged between 96.85 and 103.41%. Graphical abstractSchematic representation of an electrochemical flexible electrode for the determination of tert.-butylhydroquinone based on the use of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate).

11.
Kidney Int ; 96(5): 1105-1120, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31405732

RESUMO

Inflammation and tubular cell death are the hallmarks of acute kidney injury. However, the precise mechanism underlying these effects has not been fully elucidated. Here we tested whether caspase-11, an inflammatory member of the caspase family, was increased in cisplatin or ischemia-reperfusion-induced acute kidney injury. Caspase-11 knockout mice after cisplatin treatment exhibited attenuated deterioration of renal functional, reduced tubular damage, reduced macrophage and neutrophil infiltration, and decreased urinary IL-18 excretion. Mechanistically, the upregulation of caspase-11 by either cisplatin or ischemia-reperfusion cleaved gasdermin D (GSDMD) into GSDMD-N, which translocated onto the plasma membrane, thus triggering cell pyroptosis and facilitated IL-18 release in primary cultured renal tubular cells. These results were further confirmed in GSDMD knockout mice that cisplatin-induced renal morphological and functional deterioration as well as urinary IL-18 excretion were alleviated. Furthermore, deficiency of GSDMD significantly suppressed cisplatin-induced IL-18 release but not the transcription and maturation level of IL-18 in tubular cells. Thus, our study indicates that caspase-11/GSDMD dependent tubule cell pyroptosis plays a significant role in initiating tubular cell damage, urinary IL-18 excretion and renal functional deterioration in acute kidney injury.

12.
Mikrochim Acta ; 186(8): 567, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31338696

RESUMO

An enzyme-free electrochemical method is described for the determination of trace levels of malathion. It is based on a nanostructured copper-cerium oxide (CuO-CeO2) composite prepared by calcination of a Cu(II)/Ce(III) metal-organic framework. The morphology, crystal structure and elemental composition of composite was studied by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The principle for malathion determination is based on the fact that the redox signal of CuO (best measured at around -0.1 V vs. SCE) (at 100 mV/s) is inhibited by malathion due to affinity between CuO and the sulfur groups of malathion. The introduction of CeO2 into the composite system further improves the analytical performance. This is attributed to the unique microstructure and the synergistic effect between CuO and CeO2. Experimental parameters like solution pH value, Cu/Ce molar ratio, accumulation potential, accumulation time, and CuO-CeO2 volume on the electrode were optimized. The assay has a linear range of 10 fM to 100 nM and a 3.3 fM detection limit (at S/N = 3). The electrode is selectively inhibited by malathion even in the presence of potentially interfering substances. Graphical abstract A sensitive and effective enzyme-free electrochemical sensor has been developed for the detection of malathion based on CuO-CeO2 composite derived from bimetallic metal-organic frameworks.

13.
Nanotechnology ; 30(47): 475503, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31349242

RESUMO

Electrochemical methods have been deemed effective strategies for the detection of dye additive sunset yellow (SY) owing to their low cost, good stability, and high sensitivity. However, the application of the existing sensors with single electrical signal response is limited by their inadequate sensitivity and large background interference. Herein, a ratiometric electrochemical strategy with a dual signal was developed to detect SY. The strategy had an intrinsic built-in correction to the effects from the system, and thus reduced the influence of environmental change. 3D polyethyleneimine functionalized reduced graphene oxide aerogels@Au nanoparticles/SH-ß-cyclodextrin (PEI-rGAs@AuNPs/SH-ß-CD) was used as the sensing material due to its 3D macroporous microstructure with high specific surface area and excellent electronic conductivity. Guest molecule methylene blue (MB) was chosen as a probe molecule, which formed an inclusion host-guest complex with a SH-ß-CD host in advance. The target molecule SY displaced MB from the CD cavities, resulting in the decrease of MB current and the increase of SY current. With the logarithmic value of ISY/IMB as the readout signal, the detection limit of the developed ratiometric electrochemical sensor reached as low as 0.3 nM, confirming the excellent sensitivity. Furthermore, this strategy exhibited good selectivity and repeatability, and could be used for the detection of SY in a real sample.

14.
Chem Commun (Camb) ; 55(51): 7335-7338, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31169289

RESUMO

It is highly important to develop cost-efficient electrocatalysts for the oxygen evolution reaction (OER). In this communication, we report a novel FeS-NiS hybrid nanosheet array on Ti mesh as a highly efficient non-noble-metal electrocatalyst for OER. This catalyst requires an overpotential of 260 mV to afford a current density of 10 mA cm-2 in 1.0 M KOH, 100 and 110 mV less than those required for FeS and NiS, respectively. In addition, this catalyst shows good durability, with maintenance of its catalytic activity for at least 25 h.

15.
Mikrochim Acta ; 186(5): 291, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31016395

RESUMO

Nanosheets of tungsten disulfide (WS2) were used to improve the physicochemical properties of reduced graphene oxide aerogel (rGA). The nanosheets were directly integrated into 3D hybrid architecture of rGA by a solvothermal mixing method by which the WS2 sheets were assembled onto the conductive graphene network. WS2 with highly exfoliated and defect-rich structure made the WS2/rGA composite possess plentiful active sites, and this enhanced the electrocatalytic capability of the composite. The introduction of poorly conductive WS2 into 3D rGA system decreases the background current of rGA when used as electrode material. This is advantageous in terms of signal to-noise ratio and analytical performance in general. The WS2/rGA electrode, best operated at a potential of 0.68 V (vs. SCE) has a linear response in the 0.01 to 130 µM nitrite concentration range with a low detection limit of 3 nM (at S/N = 3). It is selective, reproducible, stable and is successfully applied to the determination of nitrite in spiked bacon samples. Graphical Abstract Schematic presentation of an electrochemically modified electrode for the detection of nitrite based on 3D tungsten disulfide/reduced graphene oxide aerogel (WS2/rGA).

16.
Mol Phylogenet Evol ; 135: 222-229, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910442

RESUMO

Biogeographical regionalization schemes have traditionally been constructed based on taxonomic endemism of families, genera, and/or species, and rarely incorporated the phylogenetic relationships between taxa. However, phylogenetic relationships are important for understanding historical connections within and among biogeographical regions. Phylogeny-based delineation of biota is a burgeoning and fruitful field that is expected to provide novel insights into the conservation of regional diversity and the evolutionary history of biota. Using the Chinese flora as an example, we compared regionalization schemes that were based on: (1) taxonomic endemism, (2) taxonomic dissimilarity, and (3) phylogenetic dissimilarity. Our results revealed general consistency among different regionalization schemes and demonstrated that the phylogenetic dissimilarity approach is preferable for biogeographical regionalization studies. Using the phylogenetic dissimilarity approach, we identified five phytogeographical regions within China: the Paleotropic, Holarctic, East Asiatic, Tethyan, and Qinghai-Tibet Plateau Regions. The relationship of these regions was inferred to be: (Paleotropic, ((East Asiatic + Holarctic) + (Tethyan + Qinghai-Tibet Plateau)).


Assuntos
Biota , Filogenia , Plantas/classificação , Biodiversidade , China , Análise por Conglomerados , Filogeografia , Tibet
17.
Mikrochim Acta ; 186(3): 171, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30756239

RESUMO

This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.

18.
Nanotechnology ; 30(18): 185502, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-30669127

RESUMO

2, 2-methylenebis (4-chlorophenol) (dichlorophenol, Dcp) is a priority pollutant that poses a serious health threat to the public. Thus, the sensitive analysis of Dcp is of great significance. Heteroatom-doped carbon nanomaterials modified electrodes have been proven to be good electrocatalysts for electrochemical sensing application. ß-cyclodextrin (ß-CD) as a signal amplifier has also been utilized in biosensors. Inspired by these, in this study, a new composite of ß-CD and three-dimensional (3D) boron-doped graphene aerogels (BGAs/ß-CD) has been designed as a high-performance electrochemical sensing platform for Dcp determination. Graphene aerogels possess high specific surface area, large pore volume and good conductivity, which ensure rapid mass transfer and accelerated electron transfer. Besides, boron doping causes uneven charge distribution on the graphene lattice surface, producing a large amount of flowing π electrons, which provide abundant active sites for the catalytic oxidation reaction of Dcp. In addition, Dcp molecules could be captured into ß-CD through host-guest recognition, which can effectively amplify the detection signal. Combining the merits of BGAs and ß-CD, the BGAs/ß-CD based sensor achieved sensitive detection of Dcp. Under optimized experimental conditions, the oxidation currents and the concentration of Dcp had a good linear relationship within 1.0 nM âˆ¼ 21 µM. The detection limit was estimated as 0.33 nM (S/N = 3). This study might provide a new basis for the fabrication of 3D BG-based aerogel architectural material and its application in Dcp detection.

19.
Acta Pharmacol Sin ; 40(6): 790-800, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30382182

RESUMO

Caspase-11 is a key upstream modulator for activation of inflammatory response under pathological conditions. In this study, we investigated the roles of caspase-11 in the maturation of interleukin-1ß (IL-1ß) and development of renal interstitial fibrosis in vivo and in vitro. Mice were subjected to unilateral ureteral obstruction (UUO). The mice were treated with either caspase-11 inhibitor wedelolactone (Wed, 30 mg/kg/day, ig) for 7 days or caspase-11 siRNA (10 nmol/20 g body weight per day, iv) for 14 days. The mice were euthanized on day 14, their renal tissue and blood sample were collected. We found that the obstructed kidney had significantly higher caspase-11 levels and obvious tubular injury and interstitial fibrosis. Treatment with Wed or caspase-11 siRNA significantly mitigated renal fibrosis in UUO mice, evidenced by the improved histological changes. Furthermore, caspase-11 inhibition significantly blunted caspase-1 activation, IL-1ß maturation, transforming growth factor-ß (TGF-ß), fibronectin, and collagen I expressions in the obstructed kidney. Renal tubular epithelial NRK-52E cells were treated in vitro with angiotensin (Ang, 1 µmol/L), which stimulated caspase-11 activation and IL-1ß maturation. Treatment with IL-1ß (20 ng/ml) significantly increased the expression of TGF-ß, fibronectin, and collagen I in the cells. Ang II-induced expression of TGF-ß, fibronectin, and collagen I were suppressed by caspase-11 siRNA or Wed. Finally, we revealed using co-immunoprecipitation that caspase-11 was able to interact with caspase-1 in NRK-52E cells. These results suggest that caspase-11 is involved in UUO-induced renal fibrosis. Elevation of caspase-11 in the obstructed kidney promotes renal fibrosis by stimulating caspase-1 activation and IL-1ß maturation.


Assuntos
Caspase 1/metabolismo , Caspases/metabolismo , Interleucina-1beta/metabolismo , Nefropatias/etiologia , Angiotensina II/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/genética , Cumarínicos/farmacologia , Ativação Enzimática , Matriz Extracelular/metabolismo , Fibrose , Inativação Gênica , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Ratos , Obstrução Ureteral/complicações
20.
Am J Physiol Renal Physiol ; 316(2): F382-F395, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207166

RESUMO

Proteinuria, the most common symptom of renal injury, is an independent factor for renal tubular injury. However, the underlying mechanism remains to be fully elucidated. Mitochondrion is an important target for proteinuria-induced renal tubular cell injury. Insufficient mitophagy exacerbates cell injury by initiating mitochondrial dysfunction-related cell apoptosis. In the experiment, the role of NIP3-like protein X (NIX)-mediated mitophagy was investigated in proteinuria-induced renal injury. In this study, we demonstrated that NIX expression was reduced in renal tubules and correlated with the decline of estimated glomerular filtration rate and increase of the proteinuria in patients. In proteinuric mice, NIX-mediated mitophagy was significantly suppressed. Meanwhile, the proteinuric mice exhibited renal dysfunction, increased mitochondrial fragmentation, and tubular cell apoptosis. Overexpression of NIX attenuated those disruptions in proteinuric mice. In cultured renal tubular epithelial cells, albumin induced a decrease in NIX-mediated mitophagy and an increase in cell apoptosis. Overexpression of NIX attenuated albumin-induced cell apoptosis, whereas NIX siRNA aggravated these perturbations. These results indicate that proteinuria suppresses NIX-mediated mitophagy in the renal tubular epithelial cell, which triggers the cell undergoing mitochondria-dependent cell apoptosis. Collectively, our finding suggests that restoration of NIX-mediated mitophagy might be a novel therapeutic target for alleviating proteinuria-induced kidney injury.


Assuntos
Albuminúria/metabolismo , Apoptose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Nefrose/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Taxa de Filtração Glomerular , Humanos , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Nefrose/genética , Nefrose/patologia , Nefrose/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA