Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 11(2): 97, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029701

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sensors (Basel) ; 20(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019131

RESUMO

The acoustic emission (AE) signal collected by a sensor in the welding process has an overlapping frequency band and weak characteristics under a complex noise background. It is difficult for the wavelet noise reduction method, with single basis function, to effectively match the different characteristic information of the welding crack AE signal. Taking into account the adaptive decomposition characteristics of Empirical Mode Decomposition (EMD), a novel wavelet packet noise reduction method for welding AE signal was proposed. The welding AE signal was adaptively decomposed into several Intrinsic Mode Functions (IMFs) by the EMD. The effective IMFs were selected by the frequency distribution characteristics of the welding crack AE signal. A wavelet packet, with a specific basis function, was subsequently performed on the effective IMFs, which were reconstructed to be the welding crack AE signal. The simulated and experimental results indicated that the proposed method can effectively achieve noise reduction of the welding crack AE signal, which provided a mean for structure crack detection in the welding process.

3.
Sensors (Basel) ; 20(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952172

RESUMO

Electronic healthcare (eHealth) identity management (IdM) is a pivotal feature in the eHealth system. Distributed ledger technology (DLT) is an emerging technology that can achieve agreements of transactional data states in a decentralized way. Building identity management systems using Blockchain can enable patients to fully control their own identity and provide increased confidence in data immutability and availability. This paper presents the state of the art of decentralized identity management using Blockchain and highlights the possible opportunities for adopting the decentralized identity management approaches for future health identity systems. First, we summarize eHealth identity management scenarios. Furthermore, we investigate the existing decentralized identity management solutions and present decentralized identity models. In addition, we discuss the current decentralized identity projects and identify new challenges based on the existing solutions and the limitations when applying it to healthcare as a particular use case.

4.
Cell Death Dis ; 11(1): 22, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924749

RESUMO

Accelerated atherosclerotic calcification is responsible for plaque burden, especially in diabetes. The regulatory mechanism for atherosclerotic calcification in diabetes is poorly characterized. Here we show that deletion of PARP-1, a main enzyme in diverse metabolic complications, attenuates diabetic atherosclerotic calcification and decreases vessel stiffening in mice through Runx2 suppression. Specifically, PARP-1 deficiency reduces diabetic arteriosclerotic calcification by regulating Stat1-mediated synthetic phenotype switching of vascular smooth muscle cells and macrophage polarization. Meanwhile, both vascular smooth muscle cells and macrophages manifested osteogenic differentiation in osteogenic media, which was attenuated by PARP-1/Stat1 inhibition. Notably, Stat1 acts as a positive transcription factor by directly binding to the promoter of Runx2 and promoting atherosclerotic calcification in diabetes. Our results identify a new function of PARP-1, in which metabolism disturbance-related stimuli activate the Runx2 expression mediated by Stat1 transcription to facilitate diabetic arteriosclerotic calcification. PARP-1 inhibition may therefore represent a useful therapy for this challenging complication.

5.
Braz J Med Biol Res ; 53(2): e9106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31994603

RESUMO

Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.

6.
ACS Omega ; 4(23): 20223-20229, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31815223

RESUMO

The ability to research individual cells is important for various biological studies. Currently reported biointerfaces for single-cell analysis can only trap individual cells in random morphologies. Cell polarity is a key factor in cellular functions, and the study of single-cell polarity can facilitate an understanding of cancer metastasis and stem-cell differentiation. For single polar cell trapping, anisotropic honeycomb-structured films were prepared. Elastic poly(1,2-butadiene) honeycomb films with ordered hexagonal pores were first prepared via the breath figure method. Subsequently, the films were subjected to mechanical stretching and fixed via photo-cross-linking under UV light irradiation. This stretched honeycomb structure was then transferred to a polystyrene surface. The resultant anisotropic porous films exhibited excellent capacity for single-cell trapping. Besides contributing to the physical spatial confinement of cells, the trapped single cells exhibited orientation in different polarities. The single polar cell array provided a novel platform for fundamental biological research.

7.
3 Biotech ; 9(12): 452, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832299

RESUMO

Xylanase is widely used in pulp and paper bleaching. In this study, the effects of rare earth ions (La3+, Ce3+, Er3+ and Gd3+) on the activity of xylanase produced by Penicillium are investigated and the application of a xylanase solution containing La3+ in paper bleaching is presented. Our results indicate that the bleaching effect of the enzyme solution containing La3+ was markedly better when the concentration of La3+ was 10-8 g/L after 4 days of incubation. The mechanism of lanthanum on the improvement of xylanase activity was revealed through electrical conductivity, atomic absorption spectrometer, infrared spectroscopy and fluorescence microscopy analyses. The PCR result clearly demonstrates that a low concentration of La3+ led to the transversions of three base pair of gene sequences. Our experiment also reveals that the La3+ may have been involved in the cellular metabolic processes of Penicillium and intervened in the base pairing and DNA replication. This research may provide new insights into the improvement of enzymatic activity by lanthanum (III) and its application in paper pulp bleaching.

8.
Sensors (Basel) ; 19(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744118

RESUMO

The detection of defects on irregular surfaces with specular reflection characteristics is an important part of the production process of sanitary equipment. Currently, defect detection algorithms for most irregular surfaces rely on the handcrafted extraction of shallow features, and the ability to recognize these defects is limited. To improve the detection accuracy of micro-defects on irregular surfaces in an industrial environment, we propose an improved Faster R-CNN model. Considering the variety of defect shapes and sizes, we selected the K-Means algorithm to generate the aspect ratio of the anchor box according to the size of the ground truth, and the feature matrices are fused with different receptive fields to improve the detection performance of the model. The experimental results show that the recognition accuracy of the improved model is 94.6% on a collected ceramic dataset. Compared with SVM (Support Vector Machine) and other deep learning-based models, the proposed model has better detection performance and robustness to illumination, which proves the practicability and effectiveness of the proposed method.

9.
Biomed Pharmacother ; 120: 109480, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31562980

RESUMO

Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Nanoparticle systems carrying drugs have already been developed to treat MI. To improve the efficiency of tanshinone (TAN), and to achieve the synergistic effect of TAN and puerarin (PUE), PUE-prodrug and TAN co-loaded solid lipid nanoparticles (SLN) was structured and utilized for MI treatment in the present research. PUE-prodrug was synthesized by an esterification reaction. PUE-prodrug and TAN co-loaded SLN (PUEp/TAN-SLN) were prepared by a single emulsification followed by a solvent evaporation method. The physicochemical properties of SLN were characterized and the in vivo infarct therapy effects were evaluated in MI rats. PUE-prodrug and TAN contained SLN showed a size of 112.6 ± 3.1 nm. The SLN encapsulation reduced the cytotoxicity of drugs and was a safer system. PUEp-SLN exhibited a 1.7-fold increase in comparison to PUE-SLN (21.2 ± 2.1 versus 12.5 ± 1.5 mg/L), in the mean time a 3.4-fold increase compared with free PUE in heart drug concentration (21.2 ± 2.1 versus 6.3 ± 0.9 mg/L). In vivo infarct therapy efficiency of double drugs loaded PUEp/TAN-SLN (17 ± 1.9%) was significantly better than the single drug loaded PUEp-SLN (31 ± 1.6%) and TAN-SLN (40 ± 2.2%). PUE-prodrug contained, double drugs co-loaded SLN can be utilized as promising candidate delivery system for cardioprotective drugs in treatment of myocardial infarction.

10.
J Phys Chem B ; 123(40): 8569-8579, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31535861

RESUMO

Polyimides (PIs) are in high demand in the field of active matrix organic light-emitting diode displays because of their excellent heat resistance, chemical stability, and mechanical properties. However, the most critical key to their application is to further enhance their glass transition temperature (Tg), which directly affects the processing temperature of thin-film transistors on the PI films. Therefore, it is of great importance to study the factors that have an influence on the Tg of PIs. To accomplish this goal, PIs derived from pyromellitic acid dianhydride and three sets of isomeric imidazole-based diamines were investigated. The investigation, by computational methods, was to clarify the effect of intrinsic factors associated with the molecular structure of the PIs on their Tg and to construct a structure-Tg relationship for these PIs. For each model system, all-atom molecular dynamics simulations were used to identify and distinguish the effects of chain rigidity, fractional free volume (FFV), cohesive energy density, hydrogen-bonding interactions, and charge-transfer complex interactions on Tg. The results showed that the physical property, chain rigidity, has a direct impact on Tg regardless of the polymer backbone structure. A linear correlation between the increase of FFV and the decrease of Tg was not established due to the existence of hydrogen-bonding interactions, but the tendency was maintained. Furthermore, the formation of hydrogen bonds was found to have an indirect relationship with Tg. That is, the increase of intrachain hydrogen bonds would lead to a decrease in chain rigidity and consequently reduce the Tg value.

11.
PLoS One ; 14(8): e0220654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31369621

RESUMO

BACKGROUND/AIM: No-reflow is a serious and frequent event during primary percutaneous coronary intervention (PPCI) for acute ST segment elevation myocardial infarction (STEMI). The aim of this study was to identify possible predictors for no-reflow. PATIENTS AND METHODS: We investigated 218 patients with acute anterior STEMI who underwent PPCI from December 2016 to December 2018. No-reflow was defined as a coronary TIMI flow grade of ≤ 2. TIMI flow grade 3 was defined as normal reflow. RESULTS: In our study, the no-reflow phenomenon was observed in 39 patients (18%) during angiography. The patients of no-reflow group were found to be more older, diabetics, longer pain-to-balloon time, lower blood pressure, higher platelet counts and higher levels of D-Dimer and Cystatin C (Cys-C). In multivariate logistic regression analysis, only diabetes (OR = 0.371, 95% CI: 0.157-0.872, P = 0.023), longer pain-to-balloon time (OR = 1.147, 95% CI: 1.015-1.297, P = 0.028) and higher Cys-C level (OR = 10.07, 95% CI: 2.340-43.377, P = 0.002) were predictors for no-reflow. CONCLUSION: Cys-C might be a useful predictor for the no-reflow phenomenon after PPCI in STEMI patients. It might help to screen STEMI patients with high risk of no-reflow on admission.

12.
Biomater Sci ; 7(10): 4027-4035, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389406

RESUMO

The efficient recognition and isolation of rare cancer cells from blood has great significance for early cancer diagnosis and monitoring prognosis. In this paper, we propose a cell-imprinted biomimetic interface for highly efficient capture of circulating tumor cells (CTCs) through the use of target cells as an imprint template. The cell-morphology topologies and residual biomolecular receptors on the cell-imprinted interface recognize template cells by mimicking the specific immunoaffinity of the antibody-antigen (known as plastic antibody). Furthermore, we introduced a natural antibody (anti-EpCAM) to accelerate the CTC-material interaction. Due to the synergistic contribution of natural and plastic antibodies, the imprinted surface exhibited high performances in CTC detection on an artificial blood sample, with a capture efficiency higher than 55%. In addition to the experiment, we conducted a systematic analysis of the biochemical recognition (real antibody anti-EpCAM and plastic receptor) and topographic interaction to gain insight into the cell-biointerface interaction. The results of this study provide new prospects for designing cell-material interaction interfaces for future cell-based biological research and clinical applications.

13.
Biomed Pharmacother ; 118: 109224, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349139

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus. It's known that glucagon-like peptide-1 (GLP-1) and prolyl 4-hydroxylase subunit alpha-1 (P4HA1) have significant effect on cardiovascular function, but their interaction in cardiac fibroblasts (CFs) is still being unraveled. METHODS AND RESULTS: The present study demonstrated that glucose promotes CFs proliferation and cardiac fibrosis. Using qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, wound healing and Transwell assays to explore the functions of liraglutide and P4HA1 in high-glucose (HG)-induced CFs, we proved that liraglutide as well as silencing of P4HA1 inhibited cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis in HG-induced CFs. In addition, liraglutide downregulated P4HA1 expression, upregulated CD36 and P-JNK expression levels, and enhanced the DNA binding activity of AP-1 on P4HA1. Inhibition of CD36 or p--JNK promoted P4HA1 expression. CONCLUSIONS: Liraglutide may down-regulate P4HA1 expression at least partly though CD36-JNK-AP1 pathway, thereby reducing myocardial fibrosis. Therefore, our study provides novel insight into the molecular mechanism and function of liraglutide in HG-mediated CFs.

14.
Rev Sci Instrum ; 90(4): 045122, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042989

RESUMO

This paper proposes a novel compliant underactuated gripper with multiple working modes. Based on the pseudo-rigid-body method, a static analysis of different working modes is carried out, establishing an analytical relationship between the output grasping forces and the input load. For the enveloped grasping mode, an algorithm to determine the static equilibrium position is given. Furthermore, a parametric optimization algorithm based on gradient descent is designed to obtain the maximum grasping forces. The effectiveness of the multiple grasping modes, the grasping force models, and the optimization algorithm are verified by a dynamic simulation package and finite element analysis as well as by experimental tests. Finally, various grasping experiments are conducted to further validate each working mode, the stability of grasping, and the ability to protect fragile objects.

15.
Catheter Cardiovasc Interv ; 93(7): 1184-1193, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116913

RESUMO

OBJECTIVES: This study aimed to investigate the impacts of intravascular ultrasound (IVUS)-guided drug-eluting stent (DES) implantation on patients with chronic kidney disease (CKD) based on the ULTIMATE trial. BACKGROUND: IVUS-guided DES implantation improves clinical outcomes in complex lesions. However, routine IVUS guidance in patients with CKD remains controversial. METHODS: CKD was defined as an estimated glomerular filtration rate (eGFR) <60 mL min-1 1.73 m-2 . The primary end point was target vessel failure (TVF) at 12 months, including cardiac death, target vessel myocardial infarction, and clinically driven target vessel revascularization. RESULTS: eGFR was available in 1,443 patients, of whom 723 were in the IVUS guidance group, and 720 were in the angiography guidance group. Finally, CKD was present in 349 (24.2%) patients. At 12 months, TVF in the CKD group was 7.2%, which was significantly higher than 3.2% in the non-CKD group (p = .001). Moreover, there were 25 TVFs in the CKD patients, with 7 (3.9%) TVFs in the IVUS group and 18 (10.7%) TVFs in the angiography group (hazard ratio [HR]: 0.35; 95% confidence interval [CI]: 0.15-0.84; p = .01), whereas 35 TVFs occurred in patients without CKD, with 14 (2.6%) TVFs in the IVUS group and 21 (3.8%) TVFs in the angiography group (HR: 0.67; 95% CI: 0.34-1.32; p = .25; p for interaction = .24). CONCLUSIONS: This study demonstrated that CKD patients undergoing DES implantations were associated with a higher risk of TVF at 12 months. More importantly, the risk of TVF in the CKD patients could be significantly decreased through IVUS guidance. CLINICAL TRIAL: NCT02215915.

16.
EXCLI J ; 18: 21-29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956636

RESUMO

Macrophages are important mediators of inflammatory cardiovascular diseases, and various macrophage phenotypes exert opposite effects during inflammation. In our previous study, we proved that suppressed androgen receptor (AR) alleviated inflammation during experimental autoimmune myocarditis (EAM). As anti-inflammatory cells, whether M2 macrophages are involved in this process remains unclear. Here, we showed that anti-inflammatory cytokines and M2 macrophages were elevated when AR was suppressed during EAM. In IL-4 stimulation-induced M2 macrophages, impaired AR with ASC-J9 increased the expression of M2 macrophage-related factors. Moreover, suppressed AR expression resulted in macrophage M2 polarization by reducing SOCS3 production and enhancing STAT3 activation. Taken together, our data suggest that AR plays a critical role in macrophage polarization and suppressed redundant AR expression promotes anti-inflammatory M2 macrophages reprogramming. This study suggests a potential therapeutic agent for inflammatory cardiomyopathy through the use of ASC-J9.

17.
Langmuir ; 35(15): 5168-5175, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30908060

RESUMO

Improper disposal of metal nanoparticles has caused serious environmental and pathological problems because of their active nanotoxicity. Therefore, there is an urgent need to develop a strategy for efficiently removing redundant metal nanoparticles from water, while also permitting restoration of their catalytic activities to those of pristine particles for reapplication. Herein, we present intrinsically nitrogen-rich cross-linked polyphosphazene microparticles to capture silver nanoparticles (AgNPs) from aqueous media by a simple one-step method. The described microparticles exhibit an outstanding adsorption capacity for AgNPs of approximately 59.35 mg/g, exceeding those of other adsorbents. The adsorption kinetics of AgNPs on these microparticles obeyed a pseudo-second-order kinetic model. More importantly, the recovered AgNPs maintained good catalytic activity in the reduction of methylene blue by sodium borohydride. Based on their simple preparation, high adsorption efficiency, and nondestructive effect on the catalytic activity of the recovered AgNPs, the described polyphosphazene microparticles display promising potential for the removal and recovery of AgNPs from water.

18.
Sci Rep ; 9(1): 4545, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872737

RESUMO

To determine whether the traditional Chinese medicine Tongxinluo (TXL) is efficacious at retarding the progression of carotid atherosclerotic lesions, a total of 1,212 patients with a focal intima-media thickness (IMT) of ≥1.2 mm of the carotid arteries received TXL or placebo capsules in addition to current routine therapy. The primary outcome was between-group differences in annualized change in mean IMT of 12 sites of bilateral carotid arteries over 24 months. The secondary outcomes were between-group differences in plaque area, vascular remodeling index (RI), serum levels of lipids and high-sensitivity C-reactive protein, and a composite of first major cardiovascular events. The results showed that the annualized change in mean IMT in the TXL and placebo groups was -0.00095 (95% CI, -0.00330 to 0.00141) mm and 0.01312 (95% CI, 0.01076 to 0.01548) mm, respectively, with a difference between the two groups of -0.01407 (95% CI, -0.01740 to -0.01073) mm (P < 0.001). Compared with placebo, TXL treatment significantly reduced the change from baseline in the plaque area and RI, as well as the first major cardiovascular events. In conclusion, TXL retarded the progression of mean IMT, plaque area and vascular remodeling of the carotid artery with a good safety profile.

19.
Acta Biochim Biophys Sin (Shanghai) ; 51(3): 293-300, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30883649

RESUMO

Diabetic cardiomyopathy is an important contributor to morbidity and mortality of diabetic patients by causing heart failure. Interstitial and perivascular fibrosis plays a crucial role in diabetic cardiomyopathy. However, there is a lack of effective specific treatments available for diabetic cardiomyopathy. In the present study, we aim to explore the effects of Liraglutide, a GLP-1 analogue, on diabetic cardiomyopathy in STZ-induced diabetic rats fed with high-fat diet. A total of 60 male Wistar rats were randomly assigned to three groups, i.e. normal group, model group, and Liraglutide group, with 20 rats in each group. Serum levels of TC, TG, LDL-C, NEFA, and hydroxyproline were measured using commercial kits. Cardiac function was evaluated by QRS waves, LVEDd, LVESd, and LVEF. Myocardial fibrosis was measured by immunohistochemistry. Our results demonstrated that chronic administration of Liraglutide decreased the level of blood glucose and significantly alleviated lipid metabolic disturbance compared with the model group. Furthermore, Liraglutide was found to improve the damaged cardiac function. In line with this, we also found that the alleviation of cardiac dysfunction was associated with the decreased fibrosis in diabetic myocardial tissues, which was reflected by the decreased expressions of P4hα-1, COL-1, COL-3, MMP-1, and MMP-9. Our results thus suggest that Liraglutide might have a myocardial protective effect by inhibiting P4hα-1-mediated myocardial fibrosis.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Liraglutida/uso terapêutico , Miocárdio/patologia , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores , Animais , Glicemia/análise , Diabetes Mellitus Experimental/complicações , Fibrose , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Estreptozocina
20.
Langmuir ; 35(4): 1040-1046, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30605340

RESUMO

Antibodies of epithelial cell-adhesion molecule (anti-EpCAM)-based interfaces have proven to be highly efficient at capturing circulating tumor cells (CTCs). To achieve the bonding of anti-EpCAM to the interface, biotin and streptavidin are used to modify the surface. These processes are critical to subsequent cell-capture efficiencies. However, quantitative research on the interactions between biotin, streptavidin, and biotinylated anti-EpCAM on the interface is lacking. In this work, the thermodynamics and kinetics of biomolecular interactions were determined by using surface plasmon resonance. The equilibrium binding affinities for biotinylated anti-EpCAM to streptavidin and streptavidin to biotin (illustrated by biotin-PEG400-thiol) were found to be 2.75 × 106 and 8.82 × 106 M-1, respectively. Each streptavidin can bind up to 2.30 biotinylated anti-EpCAM under thermodynamic equilibrium. The findings provide useful information to optimize the modification of anti-EpCAM and improve the capture efficiency of CTCs.


Assuntos
Anticorpos/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Células Neoplásicas Circulantes/imunologia , Ressonância de Plasmônio de Superfície , Biotina/química , Biotina/imunologia , Humanos , Cinética , Células MCF-7 , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/patologia , Estreptavidina/química , Estreptavidina/imunologia , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA