Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Pollut ; 320: 121020, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36632970


Metabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 µm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days. Changes in weight, survival rate, intestinal microbiota and metabolic responses of the earthworms were assessed. The results showed that polystyrene microplastics did not influence the weight, survival rate, or biodiversity of the gut microbiota, but significantly decreased the relative abundance of Bacteroidetes at the phylum level. Moreover, polystyrene microplastics disturbed the osmoregulatory metabolism of earthworms, as indicated by the significantly decreased betaine, myo-inositol and lactate, and increased 2-hexyl-5-ethyl-furan-3-sulfonic acid at the metabolic level. This study provides important insights into the molecular toxicity of environmentally relevant concentrations of polystyrene microplastics on soil fauna.

J Hazard Mater ; 427: 128176, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34996001


Examining transcriptomic and metabolic responses of earthworms to microplastic-contaminated soil is critical for understanding molecular-level toxicity of microplastics; yet very little research on this topic exists. We investigated influences of environmentally relevant concentrations (ERC) of polypropylene (PP) and polyethylene (PE) microplastic-contaminated soil on earthworms at the transcriptomic, metabolic, tissue and whole-body levels to study their molecular toxicity. The addition of PP and PE at ERC induced oxidative stress on earthworms, as indicated by the high enrichment of glutathione metabolism and increased glutamine at the transcriptomic and metabolic levels. Digestive and immune systems of earthworms were damaged according to the injuries of the intestinal epithelium, partial shedding of chloragogenous tissues and unclear structure of coelom tissues, which were confirmed by pathway analysis at the transcriptomic level. Significant enrichment of arachidonic acid and glycerolipid metabolisms indicated that PP and PE disturbed the lipid metabolism in earthworms. Significantly increased betaine and myo-inositol, and decreased 2-hexyl-5-ethyl-3-furansulfonate suggested that PP and PE caused differences in osmoregulation extent. In conclusion, most similar responses of earthworm might result from special size rather than type effects of PP and PE microplastics. Contamination of soils with microplastics even at ERC has health risks to earthworms; therefore, proper management of microplastics to reduce their input to the environment is key to reducing the health risks to soil fauna.

Oligoquetos , Poluentes do Solo , Animais , Microplásticos , Oligoquetos/genética , Plásticos/toxicidade , Polietileno/toxicidade , Polipropilenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Transcriptoma