Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35729794

RESUMO

Herein, we report a systematic solvent selection for eco-friendly processed binary all-polymer solar cells (APSCs) with decent power conversion efficiencies (PCEs). Three typical solvents, toluene, o-xylene, and 1,2,4-trimethylbezene, are chosen and compared. The device enabled by o-xylene exhibits the most outstanding PCE of 16.22%, thanks to its favorable morphology, which is to say a well-formed face-on orientation packing motif and a suitable crystallinity and size of phase segregation. Consequently, the solar cell affords sufficient charge generation, as well as efficient and balanced charge transport, which are all positive to pursuing high efficiency. This work offers an understanding of using complete solvent selection as the strategy to realize high-performance devices by sophisticatedly controlling the morphology.

2.
Adv Mater ; : e2203379, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765940

RESUMO

Forming an ideal bulk heterojunction (BHJ) morphology is a critical issue governing the photon to electron process in organic solar cells (OSCs). Complementary to the widely-used blend casting (BC) method for BHJ construction, the sequential casting (SC) can also enable similar or even better morphology and device performance for OSCs. Here we utilize BC and SC methods on three representative donor:acceptor (D:A) blends, i.e., PM6:PC71 BM, PM6:IT-4F and PM6:L8-BO. We achieve higher power conversion efficiencies (PCEs) in all cases by taking advantage of beneficial morphology from SC processing, and a champion PCE of 18.86% (certified as 18.44%) based on PM6:L8-BO blend is reached, representing the record value among binary OSCs. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to interpret the morphology evolution during the SC processing. Further, we find the vertical phase segregation delivers the improvement of device performance via affecting the charge transport and collection processes, as evidenced by the D:A ratio dependent photovoltaic properties. Besides, OSCs based on SC processing show advantages on device photostability and up-scale fabrication. This work demonstrates the versatility and efficacy of SC method for BHJ-based OSCs. This article is protected by copyright. All rights reserved.

3.
Adv Mater ; : e2201600, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35545992

RESUMO

Designing ultrastrong near-infrared (NIR) absorbing organic semiconductors is a critical prerequisite for sensitive NIR thin film organic photodetectors (OPDs), especially in the region of beyond 900 nm, where the absorption coefficient of commercial single crystalline silicon (c-Si) is below 103 cm-1 . Herein, a pyrrolo[3,2-b]thieno[2,3-d]pyrrole heterocyclic core (named as BPPT) with strong electron-donating property and stretched geometry is developed. Relative to their analogue Y6, BPPT-contained molecules, BPPT-4F and BPPT-4Cl, show substantially upshifted and more delocalized highest occupied molecular orbitals, and larger transition dipole moments, leading to bathochromic and hyperchromic absorption spectra extending beyond 1000 nm with very large absorption coefficients (up to 3.7-4.3 × 105 cm-1 ) as thin films. These values are much higher than those (104 to 1 × 105 cm-1 ) of typical organic semiconductors, and 1-2 orders higher than those of commercial inorganic materials, such as c-Si, Ge, and InGaAs. The OPDs based on BPPT-4F or BPPT-4Cl blending polymer PBDB-T show high detectivity of above 1012 Jones in a wide wavelength range of 310-1010 nm with excellent peak values of 1.3-2.2 × 1013 Jones, respectively, which are comparable with and even better than those commercial inorganic photodetectors.

4.
Nat Commun ; 13(1): 2598, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545620

RESUMO

Enhancing the luminescence property without sacrificing the charge collection is one key to high-performance organic solar cells (OSCs), while limited by the severe non-radiative charge recombination. Here, we demonstrate efficient OSCs with high luminescence via the design and synthesis of an asymmetric non-fullerene acceptor, BO-5Cl. Blending BO-5Cl with the PM6 donor leads to a record-high electroluminescence external quantum efficiency of 0.1%, which results in a low non-radiative voltage loss of 0.178 eV and a power conversion efficiency (PCE) over 15%. Importantly, incorporating BO-5Cl as the third component into a widely-studied donor:acceptor (D:A) blend, PM6:BO-4Cl, allows device displaying a high certified PCE of 18.2%. Our joint experimental and theoretical studies unveil that more diverse D:A interfacial conformations formed by asymmetric acceptor induce optimized blend interfacial energetics, which contributes to the improved device performance via balancing charge generation and recombination.

5.
Adv Sci (Weinh) ; 9(18): e2200242, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460202

RESUMO

2D-3D mixed tin halide perovskites are outstanding candidate materials for lead-free perovskite solar cells (PSCs) due to their improved stability and decreased trap density in comparison with their pure 3D counterparts. However, the mixture of multiple phases may lead to poor charge transfer across the films and limit the device efficiency. Here, a stacked quasi-2D (down)-3D (top) double-layered structure in perovskite films prepared via vacuum treatment is demonstrated, which can result in a planar bilayer heterojunction. In addition, it is found that the introduction of guanidinium thiocyanate (GuaSCN) additive can improve the crystallinity and carrier mobility in the 2D perovskite layer and passivate defects in the whole film, leading to a long carrier lifetime (>140 ns) in photoluminescence measurements. As a result, the PSCs show a high open circuit voltage (VOC ) up to 1.01 V with a voltage loss of only 0.39 V, which represents the record values ever reported for tin-based PSCs. The champion device exhibits a power conversion efficiency (PCE) of 13.79% with decent stability, retaining 90% of the initial PCE for 1200 h storage in N2 -filled glovebox.

6.
Adv Sci (Weinh) ; 9(14): e2200578, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315238

RESUMO

The tuning of vertical morphology is critical and challenging for organic solar cells (OSCs). In this work, a high open-circuit voltage (VOC ) binary D18-Cl/L8-BO system is attained while maintaining the high short-circuit current (JSC ) and fill factor (FF) by employing 1,4-diiodobenzene (DIB), a volatile solid additive. It is suggested that DIB can act as a linker between donor or/and acceptor molecules, which significantly modifies the active layer morphology. The overall crystalline packing of the donor and acceptor is enhanced, and the vertical domain sizes of phase separation are significantly decreased. All these morphological changes contribute to exciton dissociation, charge transport, and collection. Therefore, the best-performing device exhibits an efficiency of 18.7% with a VOC of 0.922 V, a JSC of 26.6 mA cm-2 , and an FF of 75.6%. As far as it is known, the VOC achieved here is by far the highest among the reported OSCs with efficiencies over 17%. This work demonstrates the high competence of solid additives with two iodine atoms to tune the morphology, particularly in the vertical direction, which can become a promising direction for future optimization of OSCs.

7.
Adv Sci (Weinh) ; 9(15): e2103428, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322593

RESUMO

Two new fused-ring electron acceptor (FREA) isomers with nonlinear and linear molecular conformation, m-BAIDIC and p-BAIDIC, are designed and synthesized. Despite the similar light absorption range and energy levels, the two isomers exhibit distinct electron reorganization energies and molecular packing motifs, which are directly related to the molecular conformation. Compared with the nonlinear acceptor, the linear p-BAIDIC shows more ordered molecular packing and higher crystallinity. Furthermore, p-BAIDIC-based devices exhibit reduced nonradiative energy loss and improved charge transport mobilities. It is beneficial to enhance the open-circuit voltage (VOC ) and short-current current density (JSC ) of the devices. Therefore, the linear FREA, p-BAIDIC yields a relatively higher efficiency of 7.71% in the binary device with PM6, in comparison with the nonlinear m-BAIDIC. When p-BAIDIC is incorporated into the binary PM6/BO-4Cl system to form a ternary system, synergistic enhancements in VOC , JSC , fill factor (FF), and ultimately a high efficiency of 17.6% are achieved.

8.
ACS Appl Mater Interfaces ; 14(12): 14532-14540, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298146

RESUMO

Side-chain engineering is an efficient molecular design strategy for morphology optimization and performance improvement of organic solar cells (OSCs). Herein, a novel small-molecule donor C-2F, which owns a benzo[1,2-b:4,5-b']dithiophene (BDT) central unit with a symmetrically difluorinated benzene ring as a conjugated side chain, has been synthesized. The conjugated side chain possesses both the symmetry and halogenation effect in novel small molecular donor material. The photovoltaic devices were fabricated with N3 as an acceptor. C-2F:N3 based devices achieved an outstanding power conversion efficiency of 14.64% with a Jsc of 24.87 mA/cm2, a Voc of 0.85 V, and an FF of 69.33%. Then, we investigated the basic material properties, photovoltaic mechanism, and active layer morphology, and the results show that this molecular design strategy of the symmetrically difluorinated moiety as the conjugated side chain provides an effective method for fine-tuning the molecular stacking pattern and active layer phase separation morphology, to improve the all-small-molecule (ASM) OSCs' performances.

9.
Adv Mater ; 34(16): e2200276, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35285101

RESUMO

Manipulating the perovskite solidification process, including nucleation and crystal growth, plays a critical role in controlling film morphology and thus affects the resultant device performance. In this work, a facile and effective ethyl alcohol (EtOH) cosolvent strategy is demonstrated with the incorporation of EtOH into perovskite ink for high-performance room-temperature blade-coated perovskite solar cells (PSCs) and modules. Systematic real-time perovskite crystallization studies uncover the delicate perovskite structural evolutions and phase-transition pathway. Time-resolved X-ray diffraction and density functional theory calculations both demonstrate that EtOH in the mixed-solvent system significantly promotes the formation of an FA-based precursor solvate (FA2 PbBr4 ·DMSO) during the trace-solvent-assisted transition process, which finely regulates the balance between nucleation and crystal growth to guarantee high-quality perovskite films. This strategy efficiently suppresses nonradiative recombination and improves efficiencies in both 1.54 (23.19%) and 1.60 eV (22.51%) perovskite systems, which represents one of the highest records for blade-coated PSCs in both small-area devices and minimodules. An excellent VOC deficit as low as 335 mV in the 1.54 eV perovskite system, coincident with the measured nonradiative recombination loss of only 77 mV, is achieved. More importantly, significantly enhanced device stability is another signature of this approach.

10.
Adv Mater ; : e2200361, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315948

RESUMO

State-of-art Y-series polymer acceptors are typically based on a mono-thiophene linker, which can cause some twisted molecular conformations and thus limit the performance of all-polymer solar cells (all-PSCs). Here, a high-performance polymer acceptor based on vinylene linkers is reported, which leads to surprising changes in the polymers' molecular conformations, optoelectronic properties, and enhanced photovoltaic performance. It is found that the polymer acceptors based on thiophene or bithiophene linkers (PY-T-γ and PY-2T-γ) display significant molecular twisting between end-groups and linker units, while the vinylene-based polymer (PY-V-γ) exhibits a more coplanar and rigid molecular conformation. As a result, PY-V-γ demonstrates a better conjugation and tighter interchain stacking, which results in higher mobility and a reduced energetic disorder. Furthermore, detailed morphology investigations reveal that the PY-V-γ-based blend exhibits high domain purity and thus a better fill factor in its all-PSCs. With these, a higher efficiency of 17.1% is achieved in PY-V-γ-based all-PSCs, which is the highest efficiency reported for binary all-PSCs to date. This work demonstrates that the vinylene-linker is a superior unit to build polymer acceptors with more coplanar and rigid chain conformation, which is beneficial for polymer aggregation and efficient all-PSCs.

11.
Small Methods ; 6(3): e2101475, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064775

RESUMO

Electron donors and acceptors in organic solar cells (OSCs) shall strike a favorable vertical phase separation that acceptors and donors have sufficient contact and gradient accumulation near the cathodes and anodes, respectively. Random mixing of donors/acceptors at surface will result in charge accumulation and severe recombination for low carrier-mobility organic materials. However, it is challenging to tune the vertical distribution in bulk-heterojunction films as they are usually made from a well-mixed donor/acceptor solution. Here, for the first time, it presents with solid evidence that the commonly used 1-chloronaphthalene (CN) additive can tune the donor/acceptor vertical distribution and establish the mechanism. Different from the previous understanding that ascribed the efficiency enhancement brought by CN to the improved molecular stacking/crystallization, it is revealed that the induced vertical distribution is the dominant factor leading to the significantly increased performance. Importantly, the vertical distribution tunability is effective in various hot nonfullerene OSC systems and creates more channels for the collection of dissociated carriers at corresponding organic/electrode interfaces, which contributes the high efficiency of 18.29%. This study of the material vertical distribution and its correlation with molecular stacking offers methods for additives selection and provides insights for the understanding and construction of high-performance OSCs.

12.
Adv Mater ; 34(10): e2107659, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997631

RESUMO

The large non-radiative recombination is the main factor that limits state-of-the-art organic solar cells (OSCs). In this work, two novel structurally similar oligomers (named 5BDTBDD and 5BDDBDT) with D-A-D-A-D and A-D-A-D-A configuration are synthesized for high-performance ternary OSCs with low energy loss. As third components, these PM6 analogue oligomers effectively suppress the non-radiative recombination in OSCs. Although the highest occupied molecular orbital (HOMO) levels of 5BDTBDD and 5BDDBDT are higher than that of PM6, the oligomers enabled ultra-high electroluminescence quantum efficiency (EQEEL ) of 0.05% and improved VOC , indicating suppressing non-radiative recombination overweighs the common belief of deeper HOMO requirement in third component selection. Moreover, the different compatibility of 5BDTBDD and 5BDDBDT with PM6 and BTP-BO4Cl fine-tunes the active layer morphology with synergistic effects. The ternary devices based on PM6:5BDTBDD:BTPBO4Cl and PM6:5BDDBDT:BTP-BO4Cl achieve a significantly improved PCEs of 17.54% and 17.32%, representing the state-of-the art OSCs processed by green solvent of o-xylene. The strategy using novel oligomer as third component also has very wide composition tolerance in ternary OSCs. This is the first work that demonstrates novel structurally compatible D-A type oligomers are effective third components, and provides new understanding of synergetic energy loss mechanisms towards high performance OSCs.

13.
Light Sci Appl ; 10(1): 239, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857729

RESUMO

The benchmark tin oxide (SnO2) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However, the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO2 quantum dots (QDs) via a facile rapid room temperature synthesis. Importantly, the ligand-tailored SnO2 QDs ETL with multi-functional terminal groups in situ refines the buried interfaces with both the perovskite and transparent electrode via enhanced interface binding and perovskite passivation. These novel ETLs induce synergistic effects of physical and chemical interfacial modulation and preferred perovskite crystallization-directing, delivering reduced interface defects, suppressed non-radiative recombination and elongated charge carrier lifetime. Power conversion efficiency (PCE) of 23.02% (0.04 cm2) and 21.6% (0.98 cm2, VOC loss: 0.336 V) have been achieved for the blade-coated PSCs (1.54 eV Eg) with our new ETLs, representing a record for SnO2 based blade-coated PSCs. Moreover, a substantially enhanced PCE (VOC) from 20.4% (1.15 V) to 22.8% (1.24 V, 90 mV higher VOC, 0.04 cm2 device) in the blade-coated 1.61 eV PSCs system, via replacing the benchmark commercial colloidal SnO2 with our new ETLs.

14.
JACS Au ; 1(10): 1733-1742, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723276

RESUMO

Traditional organic photovoltaic materials exhibit low dielectric constants (εr) of 3 to 4, restricting the further enhancement of power conversion efficiencies (PCEs) of organic solar cells (OSCs). Herein we design and synthesize a fused-ring electron acceptor named Y6-4O through introducing an asymmetric highly polarizable oligo(ethylene glycol) side chain onto the pyrrole unit of Y6. Compared with alkylated Y6 (εr = 3.36), asymmetric glycolated Y6-4O shows a notably higher εr value of 5.13 and better solubility in nonhalogen solvents. Because of the higher εr value, the devices based on as-cast PM6:Y6-4O processed using toluene exhibit a higher charge separation yield, slower bimolecular recombination kinetics, and less voltage loss relative to the control devices based on PM6:Y6. Consequently, a high PCE of 15.2% is achieved for PM6:Y6-4O-based devices, whereas the PM6:Y6-based devices show PCEs of only 7.38%. 15.2% is the highest PCE for the as-cast nonhalogenated processed OSC devices, and it is also much higher than the values (<8.5%) reported for OSCs based on high-permittivity (εr > 5) organic photovoltaic semiconductors.

15.
J Phys Chem Lett ; 12(45): 10996-11004, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34739250

RESUMO

Tin halide perovskite's potential as a photovoltaic absorber has not been fully realized to date, largely due to its instability in ambient air. Here, we demonstrate by both experiments and simulations that the air instability of black-phase cesium tin iodide perovskite (γ-CsSnI3) could be greatly lessened by a controlled incorporation of bismuth (Bi) ions into the crystal lattice. Hall effect measurements on films of γ-CsSnI3 suggest the unwanted formation of a tin vacancy and p-type self-doping can be effectively suppressed by the Bi incorporation. Structural and optical results indicate that the Bi incorporation markedly enhances the air stability by impeding the direct conversion of γ-CsSnI3 to zero-dimensional Cs2SnI6. By using a stochastic surface walking (SSW) method integrating neural network (NN) potential and density functional theory (DFT), it is revealed that the remarkable enhanced stability could be attributed to a combination of factors originating from lattice-contraction-induced strain, a suppressed tin vacancy, and an increased energy barrier for the transformation of γ-CsSnI3 to Cs2SnI6. This study provides physical insights into the stabilization mechanism of tin perovskites by heterovalent B-site engineering, paving the way for realizing stable and efficient lead-free perovskite photovoltaics.

16.
ACS Appl Mater Interfaces ; 13(45): 54237-54245, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34726374

RESUMO

Unraveling the relationship between nanoscale morphology of active layers and chemical structures of organic semiconductor photovoltaic materials is crucially important for further advancing the development of all-small-molecule organic solar cells (SM-OSCs). Here, in order to delve into the effect of flexible side chains of small molecule donors on the photovoltaic properties of SM-OSCs, we synthesized two new small molecule donors substituted by different flexible alkyl chains (iso-octyl chains for SM1-EH and n-octyl chains for SM1-Oct). As a result, the two small molecules present different absorption properties, energy levels, and stacking characteristics. When blending with Y6 as an acceptor, the SM1-Oct-based SM-OSC demonstrated a higher PCE value of 11.73%, while the SM1-EH-based device presents a relatively poorer PCE value of 8.42%. In addition, the morphology analysis demonstrated that, compared with the SM1-EH:Y6 blend, the SM1-Oct:Y6 blend film displayed better molecular stacking properties with stronger multilevel diffraction and preferable phase separation, resulting in the higher hole mobility, more efficient charge separation efficiency, and better device performance. These results underline that reasonably adjusting the flexible alkyl chains of small molecule donors can be an effective approach to further advance the development of the SM-OSCs field.

17.
Nat Commun ; 12(1): 6226, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711821

RESUMO

The bulk morphology of the active layer of organic solar cells (OSCs) is known to be crucial to the device performance. The thin film device structure breaks the symmetry into the in-plane direction and out-of-plane direction with respect to the substrate, leading to an intrinsic anisotropy in the bulk morphology. However, the characterization of out-of-plane nanomorphology within the active layer remains a grand challenge. Here, we utilized an X-ray scattering technique, Grazing-incident Transmission Small-angle X-ray Scattering (GTSAXS), to uncover this new morphology dimension. This technique was implemented on the model systems based on fullerene derivative (P3HT:PC71BM) and non-fullerene systems (PBDBT:ITIC, PM6:Y6), which demonstrated the successful extraction of the quantitative out-of-plane acceptor domain size of OSC systems. The detected in-plane and out-of-plane domain sizes show strong correlations with the device performance, particularly in terms of exciton dissociation and charge transfer. With the help of GTSAXS, one could obtain a more fundamental perception about the three-dimensional nanomorphology and new angles for morphology control strategies towards highly efficient photovoltaic devices.

18.
Adv Mater ; 33(51): e2105290, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605066

RESUMO

Metal halide perovskites are of fundamental interest in the research of modern thin-film optoelectronic devices, owing to their widely tunable optoelectronic properties and solution processability. To obtain high-quality perovskite films and ultimately high-performance perovskite devices, it is crucial to understand the film formation mechanisms, which, however, remains a great challenge, due to the complexity of perovskite composition, dimensionality, and processing conditions. Nevertheless, the state-of-the-art in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) technique enables one to bridge the complex information with device performance by revealing the crystallization pathways during the perovskite film formation process. In this review, the authors illustrate how to obtain and understand in situ GIWAXS data, summarize and assess recent results of in situ GIWAXS studies on versatile perovskite photovoltaic systems, aiming at elucidating the distinct features and common ground of film formation mechanisms, and shedding light on future opportunities of employing in situ GIWAXS to study the fundamental working mechanisms of highly efficient and stable perovskite solar cells toward mass production.

19.
Nat Commun ; 12(1): 5081, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426580

RESUMO

Solution-processed metal halide perovskites have been recognized as one of the most promising semiconductors, with applications in light-emitting diodes (LEDs), solar cells and lasers. Various additives have been widely used in perovskite precursor solutions, aiming to improve the formed perovskite film quality through passivating defects and controlling the crystallinity. The additive's role of defect passivation has been intensively investigated, while a deep understanding of how additives influence the crystallization process of perovskites is lacking. Here, we reveal a general additive-assisted crystal formation pathway for FAPbI3 perovskite with vertical orientation, by tracking the chemical interaction in the precursor solution and crystallographic evolution during the film formation process. The resulting understanding motivates us to use a new additive with multi-functional groups, 2-(2-(2-Aminoethoxy)ethoxy)acetic acid, which can facilitate the orientated growth of perovskite and passivate defects, leading to perovskite layer with high crystallinity and low defect density and thereby record-high performance NIR perovskite LEDs (~800 nm emission peak, a peak external quantum efficiency of 22.2% with enhanced stability).

20.
Nat Commun ; 12(1): 4815, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376697

RESUMO

Graded bulk-heterojunction (G-BHJ) with well-defined vertical phase separation has potential to surpass classical BHJ in organic solar cells (OSCs). In this work, an effective G-BHJ strategy via nonhalogenated solvent sequential deposition is demonstrated using nonfullerene acceptor (NFA) OSCs. Spin-coated G-BHJ OSCs deliver an outstanding 17.48% power conversion efficiency (PCE). Depth-profiling X-ray photoelectron spectroscopy (DP-XPS) and angle-dependent grazing incidence X-ray diffraction (GI-XRD) techniques enable the visualization of polymer/NFA composition and crystallinity gradient distributions, which benefit charge transport, and enable outstanding thick OSC PCEs (16.25% for 300 nm, 14.37% for 500 nm), which are among the highest reported. Moreover, the nonhalogenated solvent enabled G-BHJ OSC via open-air blade coating and achieved a record 16.77% PCE. The blade-coated G-BHJ has drastically different D-A crystallization kinetics, which suppresses the excessive aggregation induced unfavorable phase separation in BHJ. All these make G-BHJ a feasible and promising strategy towards highly efficient, eco- and manufacture friendly OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...