Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Nat Genet ; 53(1): 54-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414548

RESUMO

In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10-10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with ß-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.


Assuntos
Saúde , Metabolismo/genética , Diabetes Mellitus Tipo 2/genética , Oftalmopatias/genética , Frequência do Gene/genética , Loci Gênicos , Pleiotropia Genética , Genoma Humano , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Glicina/metabolismo , Humanos , Modelos Lineares , Análise da Randomização Mendeliana , Erros Inatos do Metabolismo/genética , Metaboloma/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Telangiectasia Retiniana/genética , Tamanho da Amostra , Serina/metabolismo
2.
Nat Commun ; 12(1): 654, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510174

RESUMO

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10-17), arthritis (GDF5 p = 4 × 10-13), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Debilidade Muscular/genética , Sarcopenia/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Estudos de Coortes , Europa (Continente) , Feminino , Fator 5 de Diferenciação de Crescimento/genética , Cadeias alfa de HLA-DQ/genética , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/genética , Força Muscular/fisiologia , Debilidade Muscular/fisiopatologia , Polimorfismo de Nucleotídeo Único , Sarcopenia/fisiopatologia
3.
Nat Commun ; 11(1): 6397, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328453

RESUMO

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).


Assuntos
/genética , Interações Hospedeiro-Patógeno/genética , Proteínas/genética , /fisiologia , Sistema ABO de Grupos Sanguíneos/metabolismo , Aptâmeros de Peptídeos/sangue , Aptâmeros de Peptídeos/metabolismo , Coagulação Sanguínea , Sistemas de Liberação de Medicamentos , Feminino , Regulação da Expressão Gênica , Fatores Celulares Derivados do Hospedeiro/metabolismo , Humanos , Internet , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas/genética
4.
Sci Data ; 7(1): 393, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188205

RESUMO

Type 2 diabetes (T2D) is a global public health challenge. Whilst the advent of genome-wide association studies has identified >400 genetic variants associated with T2D, our understanding of its biological mechanisms and translational insights is still limited. The EPIC-InterAct project, centred in 8 countries in the European Prospective Investigations into Cancer and Nutrition study, is one of the largest prospective studies of T2D. Established as a nested case-cohort study to investigate the interplay between genetic and lifestyle behavioural factors on the risk of T2D, a total of 12,403 individuals were identified as incident T2D cases, and a representative sub-cohort of 16,154 individuals was selected from a larger cohort of 340,234 participants with a follow-up time of 3.99 million person-years. We describe the results from a genome-wide association analysis between more than 8.9 million SNPs and T2D risk among 22,326 individuals (9,978 cases and 12,348 non-cases) from the EPIC-InterAct study. The summary statistics to be shared provide a valuable resource to facilitate further investigations into the genetics of T2D.

5.
Diabetes Care ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203707

RESUMO

OBJECTIVE: Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS: We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS: We identified 11 genomic regions associated with plasma vitamin C (P < 5 × 10-8), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS: These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.

6.
EBioMedicine ; 61: 103062, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33096487

RESUMO

BACKGROUND: Evidence from animal models and observational epidemiology points to a role for chronic inflammation, in which interleukin 6 (IL-6) is a key player, in the pathophysiology of type 2 diabetes (T2D). However, it is unknown whether IL-6 mediated inflammation is implicated in the pathophysiology of T2D. METHODS: We performed a meta-analysis of 15 prospective studies to investigate associations between IL-6 levels and incident T2D including 5,421 cases and 31,562 non-cases. We also estimated the association of a loss-of-function missense variant (Asp358Ala) in the IL-6 receptor gene (IL6R), previously shown to mimic the effects of IL-6R inhibition, in a large trans-ethnic meta-analysis of six T2D case-control studies including 260,614 cases and 1,350,640 controls. FINDINGS: In a meta-analysis of 15 prospective studies, higher levels of IL-6 (per log pg/mL) were significantly associated with a higher risk of incident T2D (1·24 95% CI, 1·17, 1·32; P = 1 × 10-12). In a trans-ethnic meta-analysis of 260,614 cases and 1,350,640 controls, the IL6R Asp358Ala missense variant was associated with lower odds of T2D (OR, 0·98; 95% CI, 0·97, 0·99; P = 2 × 10-7). This association was not due to diagnostic misclassification and was consistent across ethnic groups. IL-6 levels mediated up to 5% of the association between higher body mass index and T2D. INTERPRETATION: Large-scale human prospective and genetic data provide evidence that IL-6 mediated inflammation is implicated in the etiology of T2D but suggest that the impact of this pathway on disease risk in the general population is likely to be small. FUNDING: The EPICNorfolk study has received funding from the Medical Research Council (MRC) (MR/N003284/1, MC-UU_12015/1 and MC_PC_13048) and Cancer Research UK (C864/A14136). The Fenland Study is funded by the MRC (MC_UU_12015/1 and MC_PC_13046).

7.
PLoS Med ; 17(10): e1003394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064751

RESUMO

BACKGROUND: Prior research suggested a differential association of 25-hydroxyvitamin D (25(OH)D) metabolites with type 2 diabetes (T2D), with total 25(OH)D and 25(OH)D3 inversely associated with T2D, but the epimeric form (C3-epi-25(OH)D3) positively associated with T2D. Whether or not these observational associations are causal remains uncertain. We aimed to examine the potential causality of these associations using Mendelian randomisation (MR) analysis. METHODS AND FINDINGS: We performed a meta-analysis of genome-wide association studies for total 25(OH)D (N = 120,618), 25(OH)D3 (N = 40,562), and C3-epi-25(OH)D3 (N = 40,562) in participants of European descent (European Prospective Investigation into Cancer and Nutrition [EPIC]-InterAct study, EPIC-Norfolk study, EPIC-CVD study, Ely study, and the SUNLIGHT consortium). We identified genetic variants for MR analysis to investigate the causal association of the 25(OH)D metabolites with T2D (including 80,983 T2D cases and 842,909 non-cases). We also estimated the observational association of 25(OH)D metabolites with T2D by performing random effects meta-analysis of results from previous studies and results from the EPIC-InterAct study. We identified 10 genetic loci associated with total 25(OH)D, 7 loci associated with 25(OH)D3 and 3 loci associated with C3-epi-25(OH)D3. Based on the meta-analysis of observational studies, each 1-standard deviation (SD) higher level of 25(OH)D was associated with a 20% lower risk of T2D (relative risk [RR]: 0.80; 95% CI 0.77, 0.84; p < 0.001), but a genetically predicted 1-SD increase in 25(OH)D was not significantly associated with T2D (odds ratio [OR]: 0.96; 95% CI 0.89, 1.03; p = 0.23); this result was consistent across sensitivity analyses. In EPIC-InterAct, 25(OH)D3 (per 1-SD) was associated with a lower risk of T2D (RR: 0.81; 95% CI 0.77, 0.86; p < 0.001), while C3-epi-25(OH)D3 (above versus below lower limit of quantification) was positively associated with T2D (RR: 1.12; 95% CI 1.03, 1.22; p = 0.006), but neither 25(OH)D3 (OR: 0.97; 95% CI 0.93, 1.01; p = 0.14) nor C3-epi-25(OH)D3 (OR: 0.98; 95% CI 0.93, 1.04; p = 0.53) was causally associated with T2D risk in the MR analysis. Main limitations include the lack of a non-linear MR analysis and of the generalisability of the current findings from European populations to other populations of different ethnicities. CONCLUSIONS: Our study found discordant associations of biochemically measured and genetically predicted differences in blood 25(OH)D with T2D risk. The findings based on MR analysis in a large sample of European ancestry do not support a causal association of total 25(OH)D or 25(OH)D metabolites with T2D and argue against the use of vitamin D supplementation for the prevention of T2D.

9.
bioRxiv ; 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32637948

RESUMO

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

10.
Mol Psychiatry ; 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393786

RESUMO

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.

11.
Mol Metab ; 34: 85-96, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180562

RESUMO

OBJECTIVES: Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. METHODS: Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. RESULTS: One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. CONCLUSIONS: In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology.

12.
Am J Hum Genet ; 106(3): 327-337, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059762

RESUMO

We aimed to increase our understanding of the genetic determinants of vitamin D levels by undertaking a large-scale genome-wide association study (GWAS) of serum 25 hydroxyvitamin D (25OHD). To do so, we used imputed genotypes from 401,460 white British UK Biobank participants with available 25OHD levels, retaining single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) > 0.1% and imputation quality score > 0.3. We performed a linear mixed model GWAS on standardized log-transformed 25OHD, adjusting for age, sex, season of measurement, and vitamin D supplementation. These results were combined with those from a previous GWAS including 42,274 Europeans. In silico functional follow-up of the GWAS results was undertaken to identify enrichment in gene sets, pathways, and expression in tissues, and to investigate the partitioned heritability of 25OHD and its shared heritability with other traits. Using this approach, the SNP heritability of 25OHD was estimated to 16.1%. 138 conditionally independent SNPs were detected (p value < 6.6 × 10-9) among which 53 had MAF < 5%. Single variant association signals mapped to 69 distinct loci, among which 63 were previously unreported. We identified enrichment in hepatic and lipid metabolism gene pathways and enriched expression of the 25OHD genes in liver, skin, and gastrointestinal tissues. We observed partially shared heritability between 25OHD and socio-economic traits, a feature which may be mediated through time spent outdoors. Therefore, through a large 25OHD GWAS, we identified 63 loci that underline the contribution of genes outside the vitamin D canonical metabolic pathway to the genetic architecture of 25OHD.


Assuntos
Estudo de Associação Genômica Ampla , Vitamina D/análogos & derivados , Feminino , Interação Gene-Ambiente , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Vitamina D/sangue
14.
BMJ ; 366: l4292, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345923

RESUMO

OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Adulto , Alelos , Diabetes Mellitus Tipo 2/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco
15.
Am J Hum Genet ; 105(1): 15-28, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178129

RESUMO

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.


Assuntos
Adiponectina/genética , Tecido Adiposo/patologia , Exoma/genética , Predisposição Genética para Doença , Lipídeos/análise , Obesidade/etiologia , Polimorfismo de Nucleotídeo Único , Tecido Adiposo/metabolismo , Adolescente , Adulto , Afro-Americanos/genética , Idoso , Idoso de 80 Anos ou mais , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Hispano-Americanos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/patologia , Fenótipo , Locos de Características Quantitativas , Adulto Jovem
16.
EBioMedicine ; 44: 467-475, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31151930

RESUMO

BACKGROUND: Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored. METHODS: An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue. FINDINGS: We found that rs11614913, a SNP within pre-miR-196a-2 at the HOXC locus, is an eQTL for miR-196a expression in abdominal subcutaneous adipose tissue (ASAT). Observations in large cohorts showed that rs11614913 increased waist-to-hip ratio, which was driven specifically by an expansion in ASAT. In further experiments, rs11614913 was associated with adipocyte size. Functional studies and transcriptomic profiling of miR-196a knock-down pre-adipocytes revealed a role for miR-196a in regulating pre-adipocyte proliferation and extracellular matrix pathways. INTERPRETATION: These data identify a role for miR-196a in regulating human body fat distribution. FUND: This work was supported by the Medical Research Council and Novo Nordisk UK Research Foundation (G1001959) and Swedish Research Council. We acknowledge the OBB-NIHR Oxford Biomedical Research Centre and the British Heart Foundation (BHF) (RG/17/1/32663). Work performed at the MRC Epidemiology Unit was funded by the United Kingdom's Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Adipócitos/metabolismo , Adulto , Alelos , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Interferência de RNA , Transdução de Sinais , Transcriptoma
17.
PLoS One ; 14(5): e0217644, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31145760

RESUMO

Waist-to-hip ratio (WHR) is a prominent cardiometabolic risk factor that increases cardio-metabolic disease risk independently of BMI and for which multiple genetic loci have been identified. However, WHR is a relatively crude proxy for fat distribution and it does not capture all variation in fat distribution. We here present a study of the role of coding genetic variants on fat mass in 6 distinct regions of the body, based on dual-energy X-ray absorptiometry imaging on more than 17k participants. We find that the missense variant CCDC92S70C, previously associated with WHR, is associated specifically increased leg fat mass and reduced visceral but not subcutaneous central fat. The minor allele-carrying transcript of CCDC92 is constitutively more highly expressed in adipose tissue samples. In addition, we identify two coding variants in SPATA20 and UQCC1 that are associated with arm fat mass. SPATA20K422R is a low-frequency variant with a large effect on arm fat only, and UQCC1R51Q is a common variant reaching significance for arm but showing similar trends in other subcutaneous fat depots. Our findings support the notion that different fat compartments are regulated by distinct genetic factors.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Obesidade/diagnóstico por imagem , Gordura Subcutânea/diagnóstico por imagem , Relação Cintura-Quadril/métodos , Absorciometria de Fóton , Tecido Adiposo/fisiopatologia , Adulto , Composição Corporal/fisiologia , Distribuição da Gordura Corporal , Índice de Massa Corporal , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Humanos , Masculino , Doenças Metabólicas/diagnóstico por imagem , Doenças Metabólicas/etiologia , Doenças Metabólicas/fisiopatologia , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Fatores de Risco , Gordura Subcutânea/fisiopatologia
18.
Diabetes ; 68(8): 1681-1691, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31088856

RESUMO

Liver dysfunction and type 2 diabetes (T2D) are consistently associated. However, it is currently unknown whether liver dysfunction contributes to, results from, or is merely correlated with T2D due to confounding. We used Mendelian randomization to investigate the presence and direction of any causal relation between liver function and T2D risk including up to 64,094 T2D case and 607,012 control subjects. Several biomarkers were used as proxies of liver function (i.e., alanine aminotransferase [ALT], aspartate aminotransferase [AST], alkaline phosphatase [ALP], and γ-glutamyl transferase [GGT]). Genetic variants strongly associated with each liver function marker were used to investigate the effect of liver function on T2D risk. In addition, genetic variants strongly associated with T2D risk and with fasting insulin were used to investigate the effect of predisposition to T2D and insulin resistance, respectively, on liver function. Genetically predicted higher circulating ALT and AST were related to increased risk of T2D. There was a modest negative association of genetically predicted ALP with T2D risk and no evidence of association between GGT and T2D risk. Genetic predisposition to higher fasting insulin, but not to T2D, was related to increased circulating ALT. Since circulating ALT and AST are markers of nonalcoholic fatty liver disease (NAFLD), these findings provide some support for insulin resistance resulting in NAFLD, which in turn increases T2D risk.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Fígado/metabolismo , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/enzimologia , Jejum/sangue , Humanos , Resistência à Insulina/fisiologia , Fígado/enzimologia , Análise da Randomização Mendeliana , Fatores de Risco , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
19.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002796

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Assuntos
Mutação com Ganho de Função/genética , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais , Adulto , Idoso , Índice de Massa Corporal , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , AMP Cíclico/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , beta-Arrestinas/metabolismo
20.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595373

RESUMO

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Variação Genética/genética , Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adipócitos/metabolismo , Índice de Massa Corporal , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Estudos de Coortes , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hemoglobina A Glicada/metabolismo , Humanos , Insulina/metabolismo , Locos de Características Quantitativas , Relação Cintura-Quadril
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...