Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037446

RESUMO

The increasing availability and complexity of next generation sequencing (NGS) datasets make ongoing training an essential component of conservation and population genetics research. A workshop entitled "ConGen 2018" was recently held to train researchers in conceptual and practical aspects of NGS data production and analysis for conservation and ecological applications. Sixteen instructors provided helpful lectures, discussions, and hands-on exercises regarding how to plan, produce, and analyze data for many important research questions. Lecture topics ranged from understanding probabilistic (e.g. Bayesian) genotype calling to the detection of local adaptation signatures from genomic, transcriptomic, and epigenomic data. We report on progress in addressing central questions of conservation genomics, advances in NGS data analysis, the potential for genomic tools to assess adaptive capacity, and strategies for training the next generation of conservation genomicists.

2.
BMC Evol Biol ; 19(1): 199, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684869

RESUMO

BACKGROUND: Secondary contact between closely related lineages can result in a variety of outcomes, including hybridization, depending upon the strength of reproductive barriers. By examining the extent to which different parts of the genome introgress, it is possible to infer the strength of selection and gain insight into the evolutionary trajectory of lineages. Following secondary contact approximately 8000 years ago in the Pacific Northwest, mule deer (Odocoileus hemionus hemionus) and black-tailed deer (O. h. columbianus) formed a hybrid swarm along the Cascade mountain range despite substantial differences in body size (up to two times) and habitat preference. In this study, we examined genetic population structure, extent of introgression, and selection pressures in freely interbreeding populations of mule deer and black-tailed deer using mitochondrial DNA sequences, 9 microsatellite loci, and 95 SNPs from protein-coding genes. RESULTS: We observed bi-directional hybridization and classified approximately one third of the 172 individuals as hybrids, almost all of which were beyond the F1 generation. High genetic differentiation between black-tailed deer and mule deer at protein-coding genes suggests that there is positive divergent selection, though selection on these loci is relatively weak. Contrary to predictions, there was not greater selection on protein-coding genes thought to be associated with immune function and mate choice. Geographic cline analyses were consistent across genetic markers, suggesting long-term stability (over hundreds of generations), and indicated that the center of the hybrid swarm is 20-30 km to the east of the Cascades ridgeline, where there is a steep ecological transition from wet, forested habitat to dry, scrub habitat. CONCLUSIONS: Our data are consistent with a genetic boundary between mule deer and black-tailed deer that is porous but maintained by many loci under weak selection having a substantial cumulative effect. The absence of clear reproductive barriers and the consistent centering of geographic clines at a sharp ecotone suggests that ecology is a driver of hybrid swarm dynamics. Adaptive introgression in this study (and others) promotes gene flow and provides valuable insight into selection strength on specific genes and the evolutionary trajectory of hybridizing taxa.


Assuntos
Cervos/classificação , Cervos/genética , Hibridização Genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Ecologia , Éxons , Feminino , Fluxo Gênico , Marcadores Genéticos , Genética Populacional , Masculino , Repetições de Microssatélites , Noroeste dos Estados Unidos , Polimorfismo de Nucleotídeo Único , Seleção Genética
3.
PLoS One ; 14(7): e0220331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365543

RESUMO

The Cape mountain zebra (Equus zebra zebra) is a subspecies of mountain zebra endemic to South Africa. The Cape mountain zebra experienced near extinction in the early 1900's and their numbers have since recovered to more than 4,800 individuals. However, there are still threats to their long-term persistence. A previous study reported that Cape mountain zebra had low genetic diversity in three relict populations and that urgent conservation management actions were needed to mitigate the risk of further loss. As these suggestions went largely unheeded, we undertook the present study, fifteen years later to determine the impact of management on genetic diversity in three key populations. Our results show a substantial loss of heterozygosity across the Cape mountain zebra populations studied. The most severe losses occurred at De Hoop Nature Reserve where expected heterozygosity reduced by 22.85% from 0.385 to 0.297. This is alarming, as the De Hoop Nature Reserve was previously identified as the most genetically diverse population owing to its founders originating from two of the three remaining relict stocks. Furthermore, we observed a complete loss of multiple private alleles from all populations, and a related reduction in genetic structure across the subspecies. These losses could lead to inbreeding depression and reduce the evolutionary potential of the Cape mountain zebra. We recommend immediate implementation of evidence-based genetic management and monitoring to prevent further losses, which could jeopardise the long term survival of Cape mountain zebra, especially in the face of habitat and climate change and emerging diseases.

4.
Mol Ecol ; 28(10): 2573-2593, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30980781

RESUMO

Discovering genetic markers associated with phenotypic or ecological characteristics can improve our understanding of adaptation and guide conservation of key evolutionary traits. The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) of the northern Great Basin Desert, USA, demonstrated exceptional tolerance to high temperatures in the desert lakes where it resided historically. This trait is central to a conservation hatchery effort to protect the genetic legacy of the nearly extinct lake ecotype. We genotyped full-sibling families from this conservation broodstock and samples from the only two remaining, thermally distinct, native lake populations at 4,644 new single nucleotide polymorphisms (SNPs). Family-based genome-wide association testing of the broodstock identified nine and 26 SNPs associated with thermal tolerance (p < 0.05 and p < 0.1), measured in a previous thermal challenge experiment. Genes near the associated SNPs had complex functions related to immunity, growth, metabolism and ion homeostasis. Principal component analysis using the thermotolerance-related SNPs showed unexpected divergence between the conservation broodstock and the native lake populations at these loci. FST outlier tests on the native lake populations identified 18 loci shared between two or more of the tests, with two SNPs identified by all three tests (p < 0.01); none overlapped with loci identified by association testing in the broodstock. A recent history of isolation and the complex genetic and demographic backgrounds of Lahontan cutthroat trout probably limited our ability to find shared thermal tolerance loci. Our study extends the still relatively rare application of genomic tools testing for markers associated with important phenotypic or environmental characteristics in species of conservation concern.


Assuntos
Ecótipo , Genômica , Truta/genética , Animais , Espécies em Perigo de Extinção , Marcadores Genéticos/genética , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Lagos , Oncorhynchus/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Truta/crescimento & desenvolvimento
5.
Trends Ecol Evol ; 34(7): 641-654, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904190

RESUMO

Aquatic species represent a vast diversity of metazoans, provide humans with the most abundant animal protein source, and are of increasing conservation concern, yet landscape genomics is dominated by research in terrestrial systems. We provide researchers with a roadmap to plan aquatic landscape genomics projects by aggregating spatial and software resources and offering recommendations from sampling to data production and analyses, while cautioning against analytical pitfalls. Given the unique properties of water, we discuss the importance of considering freshwater system structure and marine abiotic properties when assessing genetic diversity, population connectivity, and signals of natural selection. When possible, genomic datasets should be parsed into neutral, adaptive, and sex-linked datasets to generate the most accurate inferences of eco-evolutionary processes.


Assuntos
Genética Populacional , Genômica , Animais , Clima , Variação Genética , Seleção Genética
6.
Mol Ecol ; 26(22): 6253-6269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28977721

RESUMO

Adaptive differences across species' ranges can have important implications for population persistence and conservation management decisions. Despite advances in genomic technologies, detecting adaptive variation in natural populations remains challenging. Key challenges in gene-environment association studies involve distinguishing the effects of drift from those of selection and identifying subtle signatures of polygenic adaptation. We used paired-end restriction site-associated DNA sequencing data (6,605 biallelic single nucleotide polymorphisms; SNPs) to examine population structure and test for signatures of adaptation across the geographic range of an iconic Australian endemic freshwater fish species, the Murray cod Maccullochella peelii. Two univariate gene-association methods identified 61 genomic regions associated with climate variation. We also tested for subtle signatures of polygenic adaptation using a multivariate method (redundancy analysis; RDA). The RDA analysis suggested that climate (temperature- and precipitation-related variables) and geography had similar magnitudes of effect in shaping the distribution of SNP genotypes across the sampled range of Murray cod. Although there was poor agreement among the candidate SNPs identified by the univariate methods, the top 5% of SNPs contributing to significant RDA axes included 67% of the SNPs identified by univariate methods. We discuss the potential implications of our findings for the management of Murray cod and other species generally, particularly in relation to informing conservation actions such as translocations to improve evolutionary resilience of natural populations. Our results highlight the value of using a combination of different approaches, including polygenic methods, when testing for signatures of adaptation in landscape genomic studies.


Assuntos
Adaptação Fisiológica/genética , Clima , Peixes/genética , Genética Populacional , Herança Multifatorial , Animais , Austrália , Evolução Biológica , Espécies em Perigo de Extinção , Estudos de Associação Genética , Deriva Genética , Genótipo , Geografia , Polimorfismo de Nucleotídeo Único
8.
Glob Chang Biol ; 23(11): 4663-4674, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28374524

RESUMO

Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multidecade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world's most widely introduced invasive fish, across the Northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11°C). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially nonhybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.


Assuntos
Mudança Climática , Hibridização Genética , Espécies Introduzidas , Oncorhynchus mykiss/genética , Truta/genética , Animais , Humanos , Oncorhynchus mykiss/fisiologia , Temperatura Ambiente , Truta/fisiologia
9.
Evol Appl ; 10(2): 146-160, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28127391

RESUMO

Effective population size (Ne ) is among the most important metrics in evolutionary biology. In natural populations, it is often difficult to collect adequate demographic data to calculate Ne directly. Consequently, genetic methods to estimate Ne have been developed. Two Ne estimators based on sibship reconstruction using multilocus genotype data have been developed in recent years: sibship assignment and parentage analysis without parents. In this study, we evaluated the accuracy of sibship reconstruction using a large empirical dataset from five hatchery steelhead populations with known pedigrees and using 95 single nucleotide polymorphism (SNP) markers. We challenged the software COLONY with 2,599,961 known relationships and demonstrated that reconstruction of full-sib and unrelated pairs was greater than 95% and 99% accurate, respectively. However, reconstruction of half-sib pairs was poor (<5% accurate). Despite poor half-sib reconstruction, both estimators provided accurate estimates of the effective number of breeders (Nb ) when sample sizes were near or greater than the true Nb and when assuming a monogamous mating system. We further demonstrated that both methods provide roughly equivalent estimates of Nb . Our results indicate that sibship reconstruction and current SNP panels provide promise for estimating Nb in steelhead populations in the region.

10.
Conserv Biol ; 31(1): 136-149, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27214122

RESUMO

Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Incerteza , Animais , Clima , Ecossistema
12.
Evol Appl ; 9(10): 1205-1218, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27877200

RESUMO

Inbreeding depression (reduced fitness of individuals with related parents) has long been a major focus of ecology, evolution, and conservation biology. Despite decades of research, we still have a limited understanding of the strength, underlying genetic mechanisms, and demographic consequences of inbreeding depression in the wild. Studying inbreeding depression in natural populations has been hampered by the inability to precisely measure individual inbreeding. Fortunately, the rapidly increasing availability of high-throughput sequencing data means it is now feasible to measure the inbreeding of any individual with high precision. Here, we review how genomic data are advancing our understanding of inbreeding depression in the wild. Recent results show that individual inbreeding and inbreeding depression can be measured more precisely with genomic data than via traditional pedigree analysis. Additionally, the availability of genomic data has made it possible to pinpoint loci with large effects contributing to inbreeding depression in wild populations, although this will continue to be a challenging task in many study systems due to low statistical power. Now that reliably measuring individual inbreeding is no longer a limitation, a major focus of future studies should be to more accurately quantify effects of inbreeding depression on population growth and viability.

13.
Proc Biol Sci ; 283(1843)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27881749

RESUMO

Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.


Assuntos
Alelos , Hibridização Genética , Oncorhynchus/genética , Seleção Genética , Animais , Genótipo , Espécies Introduzidas , Oncorhynchus/classificação
14.
Mol Ecol Resour ; 16(5): 1165-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27438092

RESUMO

Mule deer (Odocoileus hemionus) are an excellent nonmodel species for empirically testing hypotheses in landscape and population genomics due to their large population sizes (low genetic drift), relatively continuous distribution, diversity of occupied habitats and phenotypic variation. Because few genomic resources are currently available for this species, we used exon data from a cattle (Bos taurus) reference genome to direct targeted resequencing of 5935 genes in mule deer. We sequenced approximately 3.75 Mbp at minimum 20X coverage in each of the seven mule deer, identifying 23 204 single nucleotide polymorphisms (SNPs) within, or adjacent to, 6886 exons in 3559 genes. We found 91 SNP loci (from 69 genes) with putatively fixed allele frequency differences between the two major lineages of mule deer (mule deer and black-tailed deer), and our estimate of mean genetic divergence (genome-wide FST  = 0.123) between these lineages was consistent with previous findings using microsatellite loci. We detected an over-representation of gamete generation and amino acid transport genes among the genes with SNPs exhibiting potentially fixed allele frequency differences between lineages. This targeted resequencing approach using exon capture techniques has identified a suite of loci that can be used in future research to investigate the genomic basis of adaptation and differentiation between black-tailed deer and mule deer. This study also highlights techniques (and an exon capture array) that will facilitate population genomic research in other cervids and nonmodel organisms.


Assuntos
Cervos/classificação , Cervos/genética , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , DNA/química , DNA/genética , DNA/isolamento & purificação , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Hibridização de Ácido Nucleico
16.
Mol Ecol Resour ; 16(5): 1147-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27327375

RESUMO

Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5' and 3' untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.


Assuntos
Éxons , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Ovinos/classificação , Ovinos/genética , Adaptação Biológica , Animais , Genótipo , Microfluídica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Seleção Genética , Análise de Sequência de DNA
17.
Evol Appl ; 9(6): 805-17, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27330556

RESUMO

Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

18.
PLoS One ; 11(6): e0157386, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27348125

RESUMO

Much remains unknown about the genetic status and population connectivity of high-elevation and high-latitude freshwater invertebrates, which often persist near snow and ice masses that are disappearing due to climate change. Here we report on the conservation genetics of the meltwater stonefly Lednia tumana (Ricker) of Montana, USA, a cold-water obligate species. We sequenced 1530 bp of mtDNA from 116 L. tumana individuals representing "historic" (>10 yr old) and 2010 populations. The dominant haplotype was common in both time periods, while the second-most-common haplotype was found only in historic samples, having been lost in the interim. The 2010 populations also showed reduced gene and nucleotide diversity and increased genetic isolation. We found lower genetic diversity in L. tumana compared to two other North American stonefly species, Amphinemura linda (Ricker) and Pteronarcys californica Newport. Our results imply small effective sizes, increased fragmentation, limited gene flow, and loss of genetic variation among contemporary L. tumana populations, which can lead to reduced adaptive capacity and increased extinction risk. This study reinforces concerns that ongoing glacier loss threatens the persistence of L. tumana, and provides baseline data and analysis of how future environmental change could impact populations of similar organisms.


Assuntos
Mudança Climática , Insetos/genética , Polimorfismo Genético , Animais , DNA Mitocondrial/genética , Ecossistema , Espécies em Perigo de Extinção , Fluxo Gênico , Montana
19.
Nat Commun ; 7: 11448, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27165544

RESUMO

Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.


Assuntos
Animais Selvagens/microbiologia , Brucelose/transmissão , Brucelose/veterinária , Genômica , Gado/microbiologia , Animais , Teorema de Bayes , Brucella abortus/fisiologia , Brucelose/microbiologia , Calibragem , Ecossistema , Interações Hospedeiro-Patógeno , Modelos Biológicos , Filogenia , Especificidade da Espécie , Fatores de Tempo
20.
Mol Ecol ; 25(13): 2967-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27086132

RESUMO

The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time-consuming. To address this gap, a recent workshop entitled 'ConGen 2015' was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges.


Assuntos
Conservação dos Recursos Naturais , Genética Populacional/métodos , Genômica/métodos , Evolução Biológica , Congressos como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Projetos de Pesquisa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA