Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(21): 16652-16657, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664949

RESUMO

The synthesis and characterization of the double perovskite SrLaLiOsO6 is presented. It is isostructural (P21/n) and isoelectronic (5d2) with SrLaMgReO6, which has been reported previously. The cell volumes are the same to within 1.4%: i.e., these perovskites are doppelgängers. In a previous study SrLaMgReO6 showed no sign of spin order to 2 K. New data at lower temperatures disclose a maximum in the dc susceptibility near 1.5 K. As the Curie-Weiss (C-W) temperature (Θ) for this material is -161 K, an enormous frustration index, f ≈ 100, is implied (f = |Θ|/Tord). On the other hand, SrLaLiOsO6 does not follow the C-W law over the investigated susceptibility range, 2-300 K. Fitting with an added temperature independent term (TIP) gives µeff = 1.96 µB, Θ = -102 K, and TIP = 1.01 × 10-3 emu/mol. A clear zero-field-cooled (ZFC), field-cooled (FC) divergence in the dc data occurs at ∼10 K, suggesting a much reduced frustration index, f ≈ 10, relative to SrLaMgReO6. The real part of the ac susceptibility data, χ'max, shows a frequency shift that is consistent with a spin glass ground state according to the Mydosh criterion. Heat capacity data for SrLaLiOsO6 show no sign of a λ peak at 10 K and a linear dependence on temperature below 10 K, also supporting a spin glass ground state. A spin frozen ground state for SrLaMgReO6 could not be established from χ' data due to a much weaker signal. Nonetheless, the 10-fold difference in f between these doppelgänger materials is remarkable. It is possible that the enhanced covalency with the oxide ligands for Os6+ relative to Re5+ plays a major role here. Finally, a comparison with isostructural La2LiReO6 (with a much smaller f ≈ 4) is made and a correlation between the frustration level and the sense of the local distortion of the Re(Os)-O octahedron is pointed out.

2.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443211

RESUMO

Topologically nontrivial spin textures host great promise for future spintronic applications. Skyrmions in particular are of burgeoning interest owing to their nanometric size, topological protection, and high mobility via ultra-low current densities. It has been previously reported through magnetic susceptibility, microscopy, and scattering techniques that Co8Zn8Mn4 forms an above room temperature triangular skyrmion lattice. Here, we report the synthesis procedure and characterization of a polycrystalline Co8Zn8Mn4 disordered bulk sample. We employ powder X-ray diffraction and backscatter Laue diffraction as characterization tools of the crystallinity of the samples, while magnetic susceptibility and Small Angle Neutron Scattering (SANS) measurements are performed to study the skyrmion phase. Magnetic susceptibility measurements show a dip anomaly in the magnetization curves, which persists over a range of approximately 305 K-315 K. SANS measurements reveal a rotationally disordered polydomain skyrmion lattice. Applying a symmetry-breaking magnetic field sequence, we were able to orient and order the previously jammed state to yield the prototypical hexagonal diffraction patterns with secondary diffraction rings. This emergence of the skyrmion order serves as a unique demonstration of the fundamental interplay of structural disorder and anisotropy in stabilizing the thermal equilibrium phase.

3.
Nature ; 571(7764): 234-239, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270461

RESUMO

Magnetic monopoles1-3 are hypothetical elementary particles with quantized magnetic charge. In principle, a magnetic monopole can be detected by the quantized jump in magnetic flux that it generates upon passage through a superconducting quantum interference device (SQUID)4. Following the theoretical prediction that emergent magnetic monopoles should exist in several lanthanide pyrochlore magnetic insulators5,6, including Dy2Ti2O7, the SQUID technique has been proposed for their direct detection6. However, this approach has been hindered by the high number density and the generation-recombination fluctuations expected of such thermally generated monopoles. Recently, theoretical advances have enabled the prediction of the spectral density of magnetic-flux noise from monopole generation-recombination fluctuations in these materials7,8. Here we report the development of a SQUID-based flux noise spectrometer and measurements of the frequency and temperature dependence of magnetic-flux noise generated by Dy2Ti2O7 crystals. We detect almost all of the features of magnetic-flux noise predicted for magnetic monopole plasmas7,8, including the existence of intense magnetization noise and its characteristic frequency and temperature dependence. Moreover, comparisons of simulated and measured correlation functions of the magnetic-flux noise indicate that the motions of magnetic charges are strongly correlated. Intriguingly, because the generation-recombination time constant for Dy2Ti2O7 is in the millisecond range, magnetic monopole flux noise amplified by SQUID is audible to humans.

4.
Inorg Chem ; 56(19): 11633-11639, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933829

RESUMO

In an effort to understand the structure-property relationship in magnetically frustrated systems, an orthorhombic analog of the S = 1/2 Re-based oxide Li4MgReO6 has been successfully synthesized and its physical properties were investigated. Li4MgReO6 had been previously synthesized in a monoclinic system in an ordered NaCl structure type. That system was shown to exhibit spin glass behavior below ∼12 K. The crystal structure of the latter phase was determined using powder X-ray diffraction data. A structural model was refined in the orthorhombic Fddd space group that resulted in cell dimensions of a = 5.84337 (7) Å, b = 8.33995 (9) Å, and c = 17.6237 (2) Å. The magnetic ions, Re6+ (S = 1/2), consist of various arrangements of interconnected triangles and trigonal prisms that offer potential for geometric magnetic frustration. Temperature dependent magnetic susceptibility reveals an AFM transition below ∼2 K along with a ZFC/FC divergence suggestive of spin freezing. The Curie-Weiss fitting parameters to the paramagnetic regime result in θ = -124 (1) K, which is indicative of predominant AFM interactions. A frustration index of ∼62 is in accordance with a highly frustrated magnetic ground state. Zero field (ZF) µSR data provides evidence for the onset of magnetic order below 4 K, along with the evidence for dynamical fluctuations up to 5 K. Moreover, longitudinal field (LF) µSR data reveals a complete decoupling in applied field at 2 K, which is indicative of static order in most or all of the volume fraction at ∼2 K, with partial ordered volumes coexisting with dynamical fluctuations up to 5 K. Estimates of the relative strengths of various magnetic exchange pathways at the level of spin-dimer analysis for this novel system are calculated and are compared to those of the previously reported values for the monoclinic analog.

5.
Inorg Chem ; 55(20): 10701-10713, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27700052

RESUMO

Double perovskites (DP) of the general formula Ba2MReO6, where M = Mg, Zn, and Y2/3, all based on Re6+ (5d1, t2g1), were synthesized and studied using magnetization, heat capacity, muon spin relaxation, and neutron-scattering techniques. All are cubic, Fm3̅m, at ambient temperature to within the resolution of the X-ray and neutron diffraction data, although the muon data suggest the possibility of a local distortion for M = Mg. The M = Mg DP is a ferromagnet, Tc = 18 K, with a saturation moment ∼0.3 bohr magnetons at 3 K. There are two anomalies in the heat capacity: a sharp feature at 18 K and a broad maximum centered near 33 K. The total entropy loss below 45 K is 9.68 e.u., which approaches R ln 4 (11.52 e.u.) supporting a j = 3/2 ground state. The unit cell constants of Ba2MgReO6 and the isostructural, isoelectronic analogue, Ba2LiOsO6, differ by only 0.1%, yet the latter is an anti-ferromagnet. The M = Zn DP also appears to be a ferromagnet, Tc = 11 K, µsat(Re) = 0.1 µB. In this case the heat capacity shows a somewhat broad peak near 10 K and a broader maximum at ∼33 K, behavior that can be traced to a smaller particle size, ∼30 nm, for this sample. For both M = Mg and Zn, the low-temperature magnetic heat capacity follows a T3/2 behavior, consistent with a ferromagnetic spin wave. An attempt to attribute the broad 33 K heat capacity anomalies to a splitting of the j = 3/2 state by a crystal distortion is not supported by inelastic neutron scattering, which shows no transition at the expected energy of ∼7 meV nor any transition up to 100 meV. However, the results for the two ferromagnets are compared to the theory of Chen, Pereira, and Balents, and the computed heat capacity predicts the two maxima observed experimentally. The M = Y2/3 DP, with a significantly larger cell constant (3%) than the ferromagnets, shows predominantly anti-ferromagnetic correlations, and the ground state is complex with a spin frozen component Tg = 16 K from both direct current and alternating current susceptibility and µSR data but with a persistent dynamic component. The low-temperature heat capacity shows a T1 power law. The unit cell constant of B = Y2/3 is less than 1% larger than that of the ferromagnetic Os7+ (5d1) DP, Ba2NaOsO6.

6.
Nat Commun ; 7: 12519, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531192

RESUMO

RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (µSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.

7.
Sci Adv ; 2(3): e1501652, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27051872

RESUMO

Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.


Assuntos
Metais/química , Nanoestruturas/química , Supercondutividade , Cristalografia por Raios X , Modelos Moleculares
8.
Proc Natl Acad Sci U S A ; 112(28): 8549-54, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26130810

RESUMO

A "supercooled" liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for the dielectric function ε(ω, T), and a general Kohlrausch-Williams-Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperatures has proven very difficult to identify unambiguously. Here, we introduce high precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain an improved understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility χ (ω, T), a general KWW form for the realtime magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with the VTF trajectory. Low-temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid. One implication is that this translationally invariant lattice of strongly correlated spins may be evolving toward an unprecedented magnetic glass state, perhaps due to many-body localization of spin.

9.
Dalton Trans ; 44(23): 10806-16, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25740594

RESUMO

Four new double perovskites, SrLaMReO(6) (M = Mg, Mn, Co, Ni) in which Re(5+) (5d(2)) is present, were prepared via conventional solid state reactions and characterized by X-ray and neutron powder diffraction, XANES, SQUID magnetometry, and muon spin relaxation (µSR). Synchrotron X-ray and neutron diffraction experiments confirmed that all compounds crystallize in the monoclinic P2(1)/n structure type, which consists of alternately corner-shared octahedra of MO(6) and ReO(6). Rietveld refinement results indicated anti-site mixing of less than 7% on the M/Re sites. Bond valence sum calculations (BVS) suggest all M and Re ions are 2+ and 5+, respectively, and for the Mn-containing phase this is also supported by XANES measurements. All of the materials are paramagnetic at room-temperature and their Curie-Weiss temperatures are positive (except for Mg) indicating net ferromagnetic interactions. No evidence for long-range magnetic order is evident in the dc magnetic susceptibility and µSR measurements for SrLaMgReO(6) to 2 K. The Mn-phase shows long-range order at T(C) = 190 K and neutron diffraction revealed a ferromagnetic structure with a refined net moment of ∼3.7µ(B). Both Co- and Ni-containing phases exhibit spin glass behavior at T(G) = 23 and 30 K, respectively, which is supported by neutron diffraction and a.c. susceptibility data. The structure and physical properties of these four new rhenium based ordered double perovskites are compared to the closely related "pillared perovskites", La(5)Re(3)MO(16), the isoelectronic Os(6+) (5d(2)) double perovskite Sr(2)CoOsO(6), and the Re(6+) (5d(1)) double perovskites, Sr(2)MReO(6), (M = Mg, Ca, Mn, Co, Ni).

10.
J Am Chem Soc ; 136(48): 16926-31, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25379957

RESUMO

In order to realize significant benefits from the assembly of solid-state materials from molecular cluster superatomic building blocks, several criteria must be met. Reproducible syntheses must reliably produce macroscopic amounts of pure material; the cluster-assembled solids must show properties that are more than simply averages of those of the constituent subunits; and rational changes to the chemical structures of the subunits must result in predictable changes in the collective properties of the solid. In this report we show that we can meet these requirements. Using a combination of magnetometry and muon spin relaxation measurements, we demonstrate that crystallographically defined superatomic solids assembled from molecular nickel telluride clusters and fullerenes undergo a ferromagnetic phase transition at low temperatures. Moreover, we show that when we modify the constituent superatoms, the cooperative magnetic properties change in predictable ways.

11.
Phys Rev Lett ; 110(18): 186401, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683224

RESUMO

We present high-resolution angle-resolved photoemission spectra of the heavy-fermion superconductor URu2Si2. Detailed measurements as a function of both photon energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low-energy electronic structure across the "hidden order" transition. Above the transition, our measurements reveal the existence of weakly dispersive states that exhibit a large scattering rate and do not appear to shift from above to below the Fermi level, as previously reported. Upon entering the hidden order phase, these states rapidly hybridize with light conduction band states and transform into a coherent heavy fermion liquid, coincident with a dramatic drop in the scattering rate. This evolution is in stark contrast with the gradual crossover expected in Kondo lattice systems, which we attribute to the coupling of the heavy fermion states to the hidden order parameter.

12.
Proc Natl Acad Sci U S A ; 109(47): 19161-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23115333

RESUMO

Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.


Assuntos
Fenômenos Ópticos , Rutênio/química , Compostos de Silício/química , Urânio/química , Condutividade Elétrica , Análise Espectral , Temperatura
13.
Proc Natl Acad Sci U S A ; 108(45): 18233-7, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22006302

RESUMO

Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a "Kondo-hole". No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559-12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857-6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu(2)Si(2). At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the "hybridization gapmap" technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...