Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256473

RESUMO

Both CO and H2 can be utilized as energy sources during the autotrophic growth of Clostridium ljungdahlii. In principle, CO is a more energetically and thermodynamically favorable energy source for gas fermentation in comparison to H2. Therefore, metabolism may vary during growth under different energy sources. In this study, C. ljungdahlii was fed with CO and/or CO2/H2 at pH 6.0 with a gas pressure of 0.1 MPa. C. ljungdahlii primarily produced acetate in the presence of H2 as an energy source, but produced alcohols with CO as an energy source under the same fermentation conditions. A key enzyme activity assay, metabolic flux analysis, and comparative transcriptomics were performed for investigating the response mechanism of C. ljungdahlii under different energy sources. A CO dehydrogenase and an aldehyde:ferredoxin oxidoreductase were found to play important roles in CO utilization and alcohol production. Based on these findings, novel metabolic schemes are proposed for C. ljungdahlii growing on CO and/or CO2/H2. These schemes indicate that more ATP is produced during CO-fermentation than during H2-fermentation, leading to increased alcohol production.

2.
J Biosci Bioeng ; 126(2): 235-240, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29572090

RESUMO

To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 µm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 µm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding.


Assuntos
Bacillus/metabolismo , Biodegradação Ambiental , Géis/química , Petróleo , Teste de Materiais , Campos de Petróleo e Gás , Indústria de Petróleo e Gás/métodos , Petróleo/metabolismo , Petróleo/microbiologia , Poluição por Petróleo , Tensão Superficial , Tensoativos/metabolismo , Viscosidade , Água/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28241412

RESUMO

The polycyclic aromatic hydrocarbon (PAH)-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA-DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM) and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA) and gas chromatography-mass spectrometry (GC-MS) analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(a)pyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.


Assuntos
Gordonia (Bactéria)/classificação , Campos de Petróleo e Gás , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Antracenos/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Genes de RNAr , Naftalenos/metabolismo , Fenantrenos/metabolismo , Pirenos/metabolismo , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Poluentes da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA