Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4955, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672989

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.

2.
J Clin Med ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480511

RESUMO

Primary Sjögren's syndrome (pSjS) is a chronic systemic autoimmune disorder, primarily affecting exocrine glands; its pathogenesis is still unclear. Long non-coding RNAs (lncRNAs) are thought to play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in pSjS is still lacking. To this aim, the expression of more than 540,000 human transcripts, including those ascribed to more than 50,000 lncRNAs is profiled at the same time, in a cohort of 16 peripheral blood mononuclear cells PBMCs samples (eight pSjS and eight healthy subjects). A complex network analysis is carried out on the global set of molecular interactions among modulated genes and lncRNAs, leading to the identification of reliable lncRNA-miRNA-gene functional interactions. Taking this approach, a few lncRNAs are identified as targeting highly connected genes in the pSjS transcriptome, since they have a major impact on gene modulation in the disease. Such genes are involved in biological processes and molecular pathways crucial in the pathogenesis of pSjS, including immune response, B cell development and function, inflammation, apoptosis, type I and gamma interferon, epithelial cell adhesion and polarization. The identification of deregulated lncRNAs that modulate genes involved in the typical features of the disease provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.

3.
Cells ; 8(8)2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382516

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.

4.
J Clin Med ; 8(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866419

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.

5.
Front Immunol ; 9: 1533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061880

RESUMO

Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.

6.
J Immunol Res ; 2018: 2405150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854829

RESUMO

Background: Behçet's disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. MicroRNAs (miRNAs) are key regulators of immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in BD is not fully elucidated. We aimed to identify miRNA expression signatures associated with BD and to investigate their potential implication in the disease pathogenesis. Methods: miRNA microarray analysis was performed in blood cells of BD patients and healthy controls. miRNA expression profiles were analyzed using Affymetrix arrays with a comprehensive coverage of miRNA sequences. Pathway analyses were performed, and the global miRNA profiling was combined with transcriptoma data in BD. Deregulation of selected miRNAs was validated by real-time PCR. Results: We identified specific miRNA signatures associated with BD patients with active disease. These miRNAs target pathways relevant in BD, such as TNF, IFN gamma, and VEGF-VEGFR signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the BD transcriptoma. Conclusions: The combined analysis of deregulated miRNAs and BD transcriptome sheds light on some epigenetic aspects of BD identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in BD.


Assuntos
Síndrome de Behçet/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Feminino , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Masculino , Análise em Microsséries , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Transcriptoma , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Biomed Res Int ; 2018: 7305380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850558

RESUMO

Background: Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by bone erosions and new bone formation. MicroRNAs (miRNAs) are key regulators of the immune responses. Differential expression of miRNAs has been reported in several inflammatory autoimmune diseases; however, their role in PsA is not fully elucidated. We aimed to identify miRNA expression signatures associated with PsA and to investigate their potential implication in the disease pathogenesis. Methods: miRNA microarray was performed in blood cells of PsA patients and healthy controls. miRNA pathway analyses were performed and the global miRNA profiling was combined with transcriptome data in PsA. Deregulation of selected miRNAs was validated by real-time PCR. Results: We identified specific miRNA signatures associated with PsA patients with active disease. These miRNAs target pathways relevant in PsA, such as TNF, MAPK, and WNT signaling cascades. Network analysis revealed several miRNAs regulating highly connected genes within the PsA transcriptome. miR-126-3p was the most downregulated miRNA in active patients. Noteworthy, miR-126 overexpression induced a decreased expression of genes implicated in PsA. Conclusions: This study sheds light on some epigenetic aspects of PsA identifying specific miRNAs, which may represent promising candidates as biomarkers and/or for the design of novel therapeutic strategies in PsA.


Assuntos
Artrite Psoriásica/genética , Artrite Psoriásica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Adulto , Artrite Psoriásica/sangue , Biomarcadores/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Transdução de Sinais/genética , Transcriptoma/genética
8.
J Immunol Res ; 2018: 4246965, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850627

RESUMO

Behçet disease (BD) is a chronic inflammatory multisystem disease characterized by oral and genital ulcers, uveitis, and skin lesions. Disease etiopathogenesis is still unclear. We aim to elucidate some aspects of BD pathogenesis and to identify specific gene signatures in peripheral blood cells (PBCs) of patients with active disease using novel gene expression and network analysis. 179 genes were modulated in 10 PBCs of BD patients when compared to 10 healthy donors. Among differentially expressed genes the top enriched gene function was immune response, characterized by upregulation of Th17-related genes and type I interferon- (IFN-) inducible genes. Th17 polarization was confirmed by FACS analysis. The transcriptome identified gene classes (vascular damage, blood coagulation, and inflammation) involved in the pathogenesis of the typical features of BD. Following network analysis, the resulting interactome showed 5 highly connected regions (clusters) enriched in T and B cell activation pathways and 2 clusters enriched in type I IFN, JAK/STAT, and TLR signaling pathways, all implicated in autoimmune diseases. We report here the first combined analysis of the transcriptome and interactome in PBCs of BD patients in the active stage of disease. This approach generates useful insights in disease pathogenesis and suggests an autoimmune component in the origin of BD.


Assuntos
Linfócitos B/fisiologia , Síndrome de Behçet/genética , Vasos Sanguíneos/fisiologia , Células Th17/fisiologia , Autoimunidade/genética , Coagulação Sanguínea/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inflamação/genética , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Janus Quinases/metabolismo , Terapia de Alvo Molecular , Mapas de Interação de Proteínas , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Transcriptoma/genética
9.
J Immunol Res ; 2018: 9419204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736406

RESUMO

Rotavirus is a double-stranded RNA virus belonging to the family of Reoviridae. The virus is transmitted by the faecal-oral route and infects intestinal cells causing gastroenteritis. Rotaviruses are the main cause of severe acute diarrhoea in children less than 5 years of age worldwide. In our previous work we have shown a link between rotavirus infection and celiac disease. Nonceliac gluten sensitivity (NCGS) is emerging as new clinical entity lacking specific diagnostic biomarkers which has been reported to occur in 6-10% of the population. Clinical manifestations include gastrointestinal and/or extraintestinal symptoms which recede with gluten withdrawal. The pathogenesis of the disease is still unknown. Aim of this work is to clarify some aspects of its pathogenesis using a gene array approach. Our results suggest that NCGS may have an autoimmune origin. This is based both on gene expression data (i.e., TH17-interferon signatures) and on the presence of TH17 cells and of serological markers of autoimmunity in NCGS. Our results also indicate a possible involvement of rotavirus infection in the pathogenesis of nonceliac gluten sensitivity similarly to what we have previously shown in celiac disease.


Assuntos
Doenças Autoimunes/imunologia , Doença Celíaca/imunologia , Glutens/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Células Th17/imunologia , Adulto , Autoanticorpos/sangue , Autoimunidade , Pré-Escolar , Diarreia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino
10.
Front Immunol ; 9: 449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559981

RESUMO

Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls. Our findings indicate the presence of modulated genes and miRNAs that can play a predisposing role in the development of malignancies in SSc and are important for a better risk stratification of patients and for the identification of a better individualized precision medicine strategy.


Assuntos
Carcinogênese/genética , Inflamação/genética , Leucócitos Mononucleares/imunologia , MicroRNAs/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Apoptose , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas
11.
J Rheumatol ; 44(10): 1453-1457, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28668810

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is a fibrotic immune-mediated disease of unknown etiology. Among its clinical manifestations, pulmonary involvement is the leading cause of mortality in patients with SSc. However, the genetic factors involved in lung complication are not well defined. We aimed to review the association of the MIF gene, which encodes a cytokine implicated in idiopathic pulmonary hypertension among other diseases, with the susceptibility and clinical expression of SSc, in addition to testing the association of this polymorphism with SSc-related pulmonary involvement. METHODS: A total of 4392 patients with SSc and 16,591 unaffected controls from 6 cohorts of European origin were genotyped for the MIF promoter variant rs755622. An inverse variance method was used to metaanalyze the data. RESULTS: A statistically significant increase of the MIF rs755622*C allele frequency compared with controls was observed in the subgroups of patients with diffuse cutaneous SSc (dcSSc) and with pulmonary arterial hypertension (PAH) independently (dcSSc: p = 3.20E-2, OR 1.13; PAH: p = 2.19E-02, OR 1.32). However, our data revealed a stronger effect size with the subset of patients with SSc showing both clinical manifestations (dcSSc with PAH: p = 6.91E-3, OR 2.05). CONCLUSION: We reviewed the association of the MIF rs755622*C allele with SSc and described a phenotype-specific association of this variant with the susceptibility to develop PAH in patients with dcSSc.


Assuntos
Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Esclerodermia Difusa/genética , Alelos , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Hipertensão Pulmonar/etiologia , Esclerodermia Difusa/complicações
12.
Autoimmun Rev ; 16(9): 911-924, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28705780

RESUMO

Autoimmune diseases are a complex set of diseases characterized by immune system activation and, although many progresses have been done in the last 15years, several unmet needs in the management of these patients may be still identified. Recently, a panel of international Experts, divided in different working groups according to their clinical and scientific expertise, were asked to identify, debate and formulate a list of key unmet needs within the field of rheumatology, serving as a roadmap for research as well as support for clinicians. After a systematic review of the literature, the results and the discussions from each working group were summarised in different statements. Due to the differences among the diseases and their heterogeneity, a large number of statements was produced and voted by the Experts to reach a consensus in a plenary session. At all the steps of this process, including the initial discussions by the steering committee, the identification of the unmet needs, the expansion of the working group and finally the development of statements, a large agreement was attained. This work confirmed that several unmet needs may be identified and despite the development of new therapeutic strategies as well as a better understanding of the effects of existing therapies, many open questions still remain in this field, suggesting a research agenda for the future and specific clinical suggestions which may allow physicians to better manage those clinical conditions still lacking of scientific clarity.


Assuntos
Doenças Autoimunes/diagnóstico , Doenças Reumáticas/diagnóstico , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Humanos , Melhoria de Qualidade , Doenças Reumáticas/imunologia , Doenças Reumáticas/terapia
13.
Genes (Basel) ; 8(4)2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28441778

RESUMO

The etiology of Ankylosing spondylitis (AS) is still unknown and the identification of the involved molecular pathogenetic pathways is a current challenge in the study of the disease. Adalimumab (ADA), an anti-tumor necrosis factor (TNF)-alpha agent, is used in the treatment of AS. We aimed at identifying pathogenetic pathways modified by ADA in patients with a good response to the treatment. Gene expression analysis of Peripheral Blood Cells (PBC) from six responders and four not responder patients was performed before and after treatment. Differentially expressed genes (DEGs) were submitted to functional enrichment analysis and network analysis, followed by modules selection. Most of the DEGs were involved in signaling pathways and in immune response. We identified three modules that were mostly impacted by ADA therapy and included genes involved in mitogen activated protein (MAP) kinase, wingless related integration site (Wnt), fibroblast growth factor (FGF) receptor, and Toll-like receptor (TCR) signaling. A separate analysis showed that a higher percentage of DEGs was modified by ADA in responders (44%) compared to non-responders (12%). Moreover, only in the responder group, TNF, Wnt, TLRs and type I interferon signaling were corrected by the treatment. We hypothesize that these pathways are strongly associated to AS pathogenesis and that they might be considered as possible targets of new drugs in the treatment of AS.

14.
Blood ; 129(10): 1343-1356, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28053192

RESUMO

The identification of discrete neutrophil populations, as well as the characterization of their immunoregulatory properties, is an emerging topic under extensive investigation. In such regard, the presence of circulating CD66b+ neutrophil populations, exerting either immunosuppressive or proinflammatory functions, has been described in several acute and chronic inflammatory conditions. However, due to the lack of specific markers, the precise phenotype and maturation status of these neutrophil populations remain unclear. Herein, we report that CD10, also known as common acute lymphoblastic leukemia antigen, neutral endopeptidase, or enkephalinase, can be used as a marker that, within heterogeneous populations of circulating CD66b+ neutrophils present in inflammatory conditions, clearly distinguishes the mature from the immature ones. Accordingly, we observed that the previously described immunosuppressive neutrophil population that appears in the circulation of granulocyte colony-stimulating factor (G-CSF)-treated donors (GDs) consists of mature CD66b+CD10+ neutrophils displaying an activated phenotype. These neutrophils inhibit proliferation and interferon γ (IFNγ) production by T cells via a CD18-mediated contact-dependent arginase 1 release. By contrast, we found that immature CD66b+CD10- neutrophils, also present in GDs, display an immature morphology, promote T-cell survival, and enhance proliferation and IFNγ production by T cells. Altogether, our findings uncover that in GDs, circulating mature and immature neutrophils, distinguished by their differential CD10 expression, exert opposite immunoregulatory properties. Therefore, CD10 might be used as a phenotypic marker discriminating mature neutrophils from immature neutrophil populations present in patients with acute or chronic inflammatory conditions, as well as facilitating their isolation, to better define their specific immunoregulatory properties.


Assuntos
Biomarcadores/análise , Ativação Linfocitária/imunologia , Neprilisina/biossíntese , Neutrófilos/imunologia , Linfócitos T/imunologia , Separação Celular , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Neprilisina/análise , Neprilisina/imunologia
15.
PLoS One ; 12(1): e0171073, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135336

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory arthritis of unknown origin. Its autoimmune origin has been suggested but never proven. Several reports have implicated Klebsiella pneumoniae as a triggering or perpetuating factor in AS; however, its role in the disease pathogenesis remains debated. Moreover, despite extensive investigations, a biomarker for AS has not yet been identified. To clarify these issues, we screened a random peptide library with pooled IgGs obtained from 40 patients with AS. A peptide (AS peptide) selected from the library was recognized by serum IgGs from 170 of 200 (85%) patients with AS but not by serum specimens from 100 healthy controls. Interestingly, the AS peptide shows a sequence similarity with several molecules expressed at the fibrocartilaginous sites that are primarily involved in the AS inflammatory process. Moreover, the peptide is highly homologous to a Klebsiella pneumoniae dipeptidase (DPP) protein. The antibody affinity purified against the AS peptide recognizes the autoantigens and the DPP protein. Furthermore, serum IgG antibodies against the Klebsiella DPP121-145 peptide epitope were detected in 190 of 200 patients with AS (95%), 3 of 200 patients with rheumatoid arthritis (1.5%) and only 1 of 100 (1%) patients with psoriatic arthritis. Such reactivity was not detected in healthy control donors. Our results show that antibodies directed against an epitope of a Klebsiella pneumoniae-derived protein are present in nearly all patients with AS. In the absence of serological biomarkers for AS, such antibodies may represent a useful tool in the diagnosis of the disease.


Assuntos
Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Epitopos/imunologia , Klebsiella pneumoniae/imunologia , Peptídeos/imunologia , Espondilite Anquilosante/sangue , Espondilite Anquilosante/imunologia , Sequência de Aminoácidos , Autoantígenos/imunologia , Proteínas de Bactérias/química , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Peptídeos/química , Homologia de Sequência de Aminoácidos
16.
Autoimmun Rev ; 15(9): 877-82, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27392505

RESUMO

Common variable immunodeficiency (CVID) is a heterogeneous group of diseases, characterized by primary hypogammaglobulinemia. B and T cell abnormalities have been described in CVID. Typical clinical features of CVID are recurrent airway infections; lymphoproliferative, autoinflammatory, or neoplastic disorders; and autoimmune diseases among which autoimmune thrombocytopenia (ITP) is the most common. The coexistence of immunodeficiency and autoimmunity appears paradoxical, since one represents a hypoimmune state and the other a hyperimmune state. Considering both innate and adaptive immune response abnormalities in CVID, it is easier to understand the mechanisms that lead to a breakdown of self-tolerance. CD21(low) B cells derive from mature B cells that have undergone chronic immune stimulation; they are increased in CVID patients. The expansion of CD21(low) B cells is also observed in certain autoimmune diseases. We have studied CD21(low) B cells in patients with CVID, CVID, and ITP and with ITP only. We observed a statistically significant increase in the CD21(low) population in the three pathological groups. Moreover, we found statistical differences between the two groups of CVID patients: patients with ITP had a higher percentage of CD21(low) cells. Our data suggest that CD21(low) cells are related to autoimmunity and may represent a link between infection and autoimmunity.


Assuntos
Infecções Bacterianas/imunologia , Imunodeficiência de Variável Comum/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Adulto , Autoimunidade/imunologia , Linfócitos B/imunologia , Infecções Bacterianas/microbiologia , Imunodeficiência de Variável Comum/complicações , Feminino , Humanos , Hospedeiro Imunocomprometido , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Púrpura Trombocitopênica Idiopática/complicações , Linfócitos T/imunologia
17.
Arthritis Rheumatol ; 68(9): 2338-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27111665

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that have similar clinical and immunologic characteristics. To date, several shared SSc-RA genetic loci have been identified independently. The aim of the current study was to systematically search for new common SSc-RA loci through an interdisease meta-genome-wide association (meta-GWAS) strategy. METHODS: The study was designed as a meta-analysis combining GWAS data sets of patients with SSc and patients with RA, using a strategy that allowed identification of loci with both same-direction and opposite-direction allelic effects. The top single-nucleotide polymorphisms were followed up in independent SSc and RA case-control cohorts. This allowed an increase in the sample size to a total of 8,830 patients with SSc, 16,870 patients with RA, and 43,393 healthy controls. RESULTS: This cross-disease meta-analysis of the GWAS data sets identified several loci with nominal association signals (P < 5 × 10(-6) ) that also showed evidence of association in the disease-specific GWAS scans. These loci included several genomic regions not previously reported as shared loci, as well as several risk factors that were previously found to be associated with both diseases. Follow-up analyses of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these 2 diseases (Pcombined = 3.29 × 10(-12) ). Analysis of the biologic relevance of the known SSc-RA shared loci identified the type I interferon and interleukin-12 signaling pathways as the main common etiologic factors. CONCLUSION: This study identified a novel shared locus, IRF4, for the risk of SSc and RA, and highlighted the usefulness of a cross-disease GWAS meta-analysis strategy in the identification of common risk loci.


Assuntos
Artrite Reumatoide/genética , Estudo de Associação Genômica Ampla , Fatores Reguladores de Interferon/genética , Escleroderma Sistêmico/genética , Loci Gênicos , Predisposição Genética para Doença , Humanos , Fatores de Risco
18.
Sci Rep ; 6: 19674, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26790609

RESUMO

Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPß transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.


Assuntos
Interferon-alfa/metabolismo , Interleucina-6/biossíntese , Neutrófilos/metabolismo , Receptor 8 Toll-Like/metabolismo , Adulto , Idoso , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Humanos , Imidazóis/farmacologia , Interferon-alfa/farmacologia , Interleucina-6/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Regiões Promotoras Genéticas , Ligação Proteica , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
19.
Ann Rheum Dis ; 75(8): 1521-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26338038

RESUMO

OBJECTIVES: TYK2 is a common genetic risk factor for several autoimmune diseases. This gene encodes a protein kinase involved in interleukin 12 (IL-12) pathway, which is a well-known player in the pathogenesis of systemic sclerosis (SSc). Therefore, we aimed to assess the possible role of this locus in SSc. METHODS: This study comprised a total of 7103 patients with SSc and 12 220 healthy controls of European ancestry from Spain, USA, Germany, the Netherlands, Italy and the UK. Four TYK2 single-nucleotide polymorphisms (V362F (rs2304256), P1104A (rs34536443), I684S (rs12720356) and A928V (rs35018800)) were selected for follow-up based on the results of an Immunochip screening phase of the locus. Association and dependence analyses were performed by the means of logistic regression and conditional logistic regression. Meta-analyses were performed using the inverse variance method. RESULTS: Genome-wide significance level was reached for TYK2 V362F common variant in our pooled analysis (p=3.08×10(-13), OR=0.83), while the association of P1104A, A928V and I684S rare and low-frequency missense variants remained significant with nominal signals (p=2.28×10(-3), OR=0.80; p=1.27×10(-3), OR=0.59; p=2.63×10(-5), OR=0.83, respectively). Interestingly, dependence and allelic combination analyses showed that the strong association observed for V362F with SSc, corresponded to a synthetic association dependent on the effect of the three previously mentioned TYK2 missense variants. CONCLUSIONS: We report for the first time the association of TYK2 with SSc and reinforce the relevance of the IL-12 pathway in SSc pathophysiology.


Assuntos
Interleucina-12/fisiologia , Polimorfismo de Nucleotídeo Único , Escleroderma Sistêmico/genética , TYK2 Quinase/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Mutação de Sentido Incorreto , Escleroderma Sistêmico/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
20.
Front Plant Sci ; 6: 1080, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648961

RESUMO

Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA