Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 10(15): 4484-4489, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295402


The diffusivity of molecules relevant to condensed-phase chemistry within viscous secondary organic aerosol (SOA) remains highly uncertain. Whereas there has been an effort to characterize water diffusivity as well as the diffusivity of larger compounds, data are lacking almost entirely for small molecules, such as carbon dioxide (CO2). Here we use photochemically generated CO2 in single particles of aqueous citric acid as a SOA proxy, levitated in an electrodynamic balance, to deduce CO2 diffusivity in the particle with unprecedented accuracy. For medium viscosities at intermediate relative humidities (∼25-40% RH), we find CO2 diffusivities DCO2 ≈ 10-14 m2 s-1, agreeing with the Stokes-Einstein relationship based on current viscosity data but 10 times lower than that for water. Conversely, under dry high-viscosity conditions, we find that DCO2 ≈ 10-16 m2 s-1, which is 10 times higher than for water. We infer that the chemical degradation of atmospheric SOA particles will likely not be limited by CO2 diffusivity.

J Geophys Res Atmos ; 124(9): 5058-5087, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31245233


The method to derive aerosol size distributions from in situ stratospheric measurements from the University of Wyoming is modified to include an explicit counting efficiency function (CEF) to describe the channel-dependent instrument counting efficiency. This is motivated by Kovilakam and Deshler's (2015, discovery of an error in the calibration method applied to the optical particle counter (OPC40) developed in the late 1980s and used from 1991 to 2012. The method can be applied to other optical aerosol instruments for which counting efficiencies have been measured. The CEF employed is the integral of the Gaussian distribution representing the instrument response at any one aerosol channel, the aerosol counting efficiency. Results using the CEF are compared to previous derivations of aerosol size distributions (Deshler et al., 2003, applied to the measurements before and after Kovilakam and Deshler's correction of number concentration for the OPC40 calibration error. The CEF method is found, without any tuning parameter, to reproduce or improve upon the Kovilakam and Deshler's results, thus accounting for the calibration error without any external comparisons other than the laboratory determined counting efficiency at each aerosol channel. Moments of the new aerosol size distributions compare well with aerosol extinctions measured by Stratospheric Aerosol and Gas Experiment II and Halogen Occultation Experiment in the volcanic period 1991-1996, generally within ±40%, the precision of OPC40 moments, and in the nonvolcanic period after 1996, generally within ±20%. Stratospheric Aerosol and Gas Experiment II and Halogen Occultation Experiment estimates of aerosol surface area are generally in agreement with those derived using the new CEF method.

Appl Opt ; 44(16): 3302-11, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15943267


A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

Algoritmos , Atmosfera/análise , Monitoramento Ambiental/métodos , Lasers , Refratometria/métodos , Água/análise , Tempo (Meteorologia) , Clima Frio , Coloides/análise , Tamanho da Partícula , Espalhamento de Radiação