Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(1): 685-694, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118991

RESUMO

A novel approach for the production of both amorphous and crystalline selenium nanoparticles (SeNPs) using femtosecond laser-induced plasma shock wave on the surface of Bi2Se3 topological insulators at room temperature and ambient pressure is demonstrated. The shape and size of SeNPs can be reliably controlled via the kinetic energy obtained from laser pulses, so these are applicable as active components in nanoscale applications. Importantly, the rapid, low-cost and eco-friendly synthesis strategy developed in this study could also be extendable to other systems.

2.
Sci Rep ; 9(1): 12762, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484973

RESUMO

In this report, the substitution of the oxygen group (=O) of Tetraphenylcyclopentadienone with =CR2 group (R = methyl ester or nitrile) was found to have tuned the electro-optical properties of the molecule. Although both groups are electrons withdrawing in nature, their absorption from UV-vis spectra analysis was observed to have been blue-shifted by methyl ester substitution and red-shifted by nitrile substitution. Interestingly, these substitutions helped to enhance the overall intensity of emission, especially in the context of methyl ester substitution whereby the emission was significantly boosted at higher concentrations due to hypothesized restrictions of intramolecular motions. These observations were explained through detailed descriptions of the electron withdrawing capability and steric properties of the substituents on the basis of density functional theory calculations.

3.
ACS Appl Mater Interfaces ; 11(24): 21473-21480, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135127

RESUMO

The inherent instability of UV-induced degradation in TiO2-based perovskite solar cells was largely improved by replacing the anatase-phase compact TiO2 layer with an atomic sheet transport layer (ASTL) of two-dimensional (2D) Ti1-δO2. The vital role of microscopic carrier dynamics that govern the UV stability of perovskite solar cells was comprehensively examined in this work by performing time-resolved pump-probe spectroscopy. In conventional perovskite solar cells, the presence of a UV-active oxygen vacancy in compact TiO2 prohibits current generation by heavily trapping electrons after UV degradation. Conversely, the dominant vacancy type in the 2D Ti1-δO2 ASTL is a titanium vacancy, which is a shallow acceptor and is not UV-sensitive. Therefore, it significantly suppresses carrier recombination and extends UV stability in perovskite solar cells with a 2D Ti1-δO2 ASTL. Other carrier dynamics, such as electron diffusion, electron injection, and hot hole transfer processes, were found to be less affected by UV irradiation. Quantitative pump-probe data clearly show a correlation between the carrier dynamics and UV aging of perovskite solar cells, thus providing a profound insight into the factors driving UV-induced degradation in perovskite solar cells and the origin of its performance.

4.
Chempluschem ; 84(9): 1375-1383, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944041

RESUMO

The instability of the organic light-emitting diodes (OLEDs) during operation can be attributed to the existence of point defects on the organic layers. In this work, the effect of mixed-host emissive layer and the thermal annealing treatment were investigated to eliminate defects and to boost the device performance. The mixed-host system includes 4,4',4''-tri (9-carbazoyl) triphenylamine (TCTA) and 2,7-bis(diphenylphosphoryl)-9, 9'-spirobi[fluorene] (SPPO13). The mixed-host emissive layer with thermal annealing treatment showed low roughness and few pinholes, and the devices fabricated from this emissive layer exhibited high efficiencies, high stabilities, and long lifetimes. The red and orange-red OLEDs exhibited efficiencies of 13.9 cd/A and 24.35 cd/A, respectively. The longest half-lifetime (L0 =500 cd/m2 ) of the red and orange-red OLEDs were 158 h and 180 h, respectively. Efforts were made to solve problems in large-area coating and to reduce the number of defects on in organic layer. Large-active-area (active area=3 cm×4 cm) red phosphorescent OLEDs (PhOLEDs) devices were realized with very high current efficiency up to 9 cd/A.

5.
Micromachines (Basel) ; 9(10)2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30424451

RESUMO

The nanomechanical properties and nanoindentation responses of bismuth selenide (Bi2Se3) thin films are investigated in this study. The Bi2Se3 thin films are deposited on c-plane sapphire substrates using pulsed laser deposition. The microstructural properties of Bi2Se3 thin films are analyzed by means of X-ray diffraction (XRD). The XRD results indicated that Bi2Se3 thin films are exhibited the hexagonal crystal structure with a c-axis preferred growth orientation. Nanoindentation results showed the multiple "pop-ins" displayed in the loading segments of the load-displacement curves, suggesting that the deformation mechanisms in the hexagonal-structured Bi2Se3 films might have been governed by the nucleation and propagation of dislocations. Further, an energetic estimation of nanoindentation-induced dislocation associated with the observed pop-in effects was made using the classical dislocation theory.

6.
Small ; 14(52): e1803763, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30430728

RESUMO

This work reveals the intrinsic carrier transport behavior of 2D organolead halide perovskites based on phase-pure homologous (n = 1, 2, and 3) Ruddelsden-Popper perovskite (RPP) (BA)2 (MA)n -1 Pbn I3n+1 single crystals. The 2D perovskite field effect transistors with high-quality exfoliated 2D perovskite bulk crystals are fabricated, and characteristic output and transfer curves are measured from individual single-crystal flakes with various n values under different temperatures. Unipolar n-type transport dominated the electrical properties of all these 2D RPP single crystals. The transport behavior of the 2D organolead halide hybrid perovskites exhibits a strong dependence on the n value and the mobility substantially increases as the ratio of the number of inorganic perovskite slabs per organic spacer increases. By extracting the effect of contact resistances, the corrected mobility values for n = 1, 2, and 3 are 2 × 10-3 , 8.3 × 10-2 , and 1.25 cm2 V-1 s-1 at 77 K, respectively. Furthermore, by combining temperature-dependent electrical transport and optical measurements, it is found that the origin of the carrier mobility dependence on the phase transition for 2D organolead halide perovskites is very different from that of their 3D counterparts. Our findings offer insight into fundamental carrier transport behavior of 2D organic-inorganic hybrid perovskites based on phase-pure homologous single crystals.

7.
Nano Lett ; 18(12): 7742-7748, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407834

RESUMO

Photostriction, optical stimulus driven mechanical deformation in materials, provides a solution toward next-generation technology. Here, the giant photostriction (∼2% change of lattice) of epitaxial strontium iridate (SrIrO3) films under illumination at room temperature is revealed via power-dependent Raman scattering, which is significantly larger as compared to conventional inorganic materials. The time scale and mechanism of this giant photostriction in SrIrO3 are further studied through time-resolved transient reflectivity measurements. The main mechanism is determined to be the electron-phonon coupling. In addition, we find that such an exotic behavior happens within few picoseconds and remains up to 107 cyclic on/off operations. The observation of giant photostriction in SrIrO3 films with superior endurance promises the advance of shape responsive solids that are sensitive to environmental stimuli, which could be widely utilized for multifunctional optoelectronics and optomechanical devices.

8.
Opt Lett ; 42(23): 4917-4920, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216144

RESUMO

Terahertz (THz) polarizers with robust structure and high transmittance are demonstrated using 3D-integrated circuit (IC) technologies. A Cu wire-grid polarizer is sealed and well protected by Si-bonded wafers through a low-temperature eutectic bonding method. Deep reactive-ion etching is used to fabricate the anti-reflection (AR) layers on outward surfaces of bonded wafers. The extinction ratio and transmittance of polarizers are between 20 dB and 33 dB, and 13 dB and 27 dB for 10 µm and 20 µm pitch wire-grids, respectively, and 100% at central frequency, depending on frequency and AR layer thickness. The process of polarizer fabrication is simple from mature semiconductor manufacturing techniques that lead to high yield, low cost, and potential for THz applications.

9.
ACS Appl Mater Interfaces ; 9(16): 14006-14012, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28281352

RESUMO

Ink-printing method emerges as a viable way for manufacturing large-scale flexible Cu(In,Ga)Se2 (CIGS) thin film photovoltaic (TFPV) devices owing to its potential for the rapid process, mass production, and low-cost nonvacuum device fabrication. Here, we brought the femtosecond laser annealing (fs-LA) process into the ink-printing CIGS thin film preparation. The effects of fs-LA treatment on the structural and optoelectronic properties of the ink-printing CIGS thin films were systematically investigated. It was observed that, while the film surface morphology remained essentially unchanged under superheating, the quality of crystallinity was significantly enhanced after the fs-LA treatment. Moreover, a better stoichiometric composition was achieved with an optimized laser scanning rate of the laser beam, presumably due to the much reduced indium segregation phenomena, which is believed to be beneficial in decreasing the defect states of InSe, VSe, and InCu. Consequently, the shunt leakage current and recombination centers were both greatly decreased, resulting in a near 20% enhancement in photovoltaic conversion efficiency.

10.
Nanoscale Res Lett ; 12(1): 208, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330186

RESUMO

In this work, aiming at developing a rapid and environmental-friendly process for fabricating CuIn1-x Ga x Se2 (CIGS) solar cells, we demonstrated the one-step selenization process by using selenium vapor as the atmospheric gas instead of the commonly used H2Se gas. The photoluminescence (PL) characteristics indicate that there exists an optimal location with superior crystalline quality in the CIGS thin films obtained by one-step selenization. The energy dispersive spectroscopy (EDS) reveals that the Ga lateral distribution in the one-step selenized CIGS thin film is intimately correlated to the blue-shifted PL spectra. The surface morphologies examined by scanning electron microscope (SEM) further suggested that voids and binary phase commonly existing in CIGS films could be successfully eliminated by the present one-step selenization process. The agglomeration phenomenon attributable to the formation of MoSe2 layer was also observed. Due to the significant microstructural improvement, the current-voltage (J-V) characteristics and external quantum efficiency (EQE) of the devices made of the present CIGS films have exhibited the remarkable carrier transportation characteristics and photon utilization at the optimal location, resulting in a high conversion efficiency of 11.28%. Correlations between the defect states and device performance of the one-step selenized CIGS thin film were convincingly delineated by femtosecond pump-probe spectroscopy.

11.
Sci Rep ; 7: 40492, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074933

RESUMO

In this study, we carried out 800-nm pump and ultra-broadband mid-infrared (MIR) probe spectroscopy with high time-resolution (70 fs) in bulk Ge. By fitting the time-resolved difference reflection spectra [ΔR(ω)/R(ω)] with the Drude model in the 200-5000 cm-1 region, the time-dependent plasma frequency and scattering rate have been obtained. Through the calculation, we can further get the time-dependent photoexcited carrier concentration and carrier mobility. The Auger recombination essentially dominates the fast relaxation of photoexcited carriers within 100 ps followed by slow relaxation due to diffusion. Additionally, a novel oscillation feature is clearly found in time-resolved difference reflection spectra around 2000 cm-1 especially for high pump fluence, which is the Lorentz oscillation lasting for about 20 ps due to the Coulomb force exerted just after the excitation.

12.
Sci Rep ; 6: 36538, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857197

RESUMO

A topological insulator (TI) is a quantum material in a new class with attractive properties for physical and technological applications. Here we derive the electronic structure of highly crystalline Sb2Te2Se single crystals studied with angle-resolved photoemission spectra. The result of band mapping reveals that the Sb2Te2Se compound behaves as a p-type semiconductor and has an isolated Dirac cone of a topological surface state, which is highly favored for spintronic and thermoelectric devices because of the dissipation-less surface state and the decreased scattering from bulk bands. More importantly, the topological surface state and doping level in Sb2Te2Se are difficult to alter for a cleaved surface exposed to air; the robustness of the topological surface state defined in our data indicates that this Sb2Te2Se compound has a great potential for future atmospheric applications.

13.
ACS Appl Mater Interfaces ; 8(38): 24989-93, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27618510

RESUMO

The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

14.
Nanoscale ; 8(34): 15795-801, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27533610

RESUMO

Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials.

15.
J Phys Condens Matter ; 28(34): 345501, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27355241

RESUMO

The electronic structure and magnetic properties of SrMn0.5Fe0.5O3 powder and films grown on (1 0 0)-SrTiO3 (STO) and (1 0 0)-LaAlO3 (LAO) substrates by pulsed laser deposition (PLD) were investigated by temperature dependent magnetization and soft x-ray absorption. The results exhibit characteristics of 3d (5) Fe(3+), [Formula: see text], and 3d (3) + 3d (4) [Formula: see text] Mn(4+) at room temperature in all samples. However, the features of 3d (5) Fe(3+) and 3d (3) Mn(4+) increased significantly for SMFO/LAO at 35 K, which also displayed substantial competition between antiferromagnetic and ferromagnetic order well-above the Néel temperature of SrFeO3 (T N ~ 134 K). We attributed this to being caused by charge disproportionation resulting from ligand-hole localization, which is more favorable to take place when the sample is under compressive strain.

16.
Sci Rep ; 6: 22088, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26917246

RESUMO

Quantum correlations between spatially separated parts of a d-dimensional bipartite system (d ≥ 2) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for d-dimensional systems provides evidence of quantum nonlocality. Experimental verification is required to confirm whether a quantum system of extremely large dimension can possess this feature, however it has never been performed for large dimension. Here, we report that Bell inequalities are experimentally violated for bipartite quantum systems of dimensionality d = 16 with the usual ensembles of polarization-entangled photon pairs. We also estimate that our entanglement source violates Bell inequalities for extremely high dimensionality of d > 4000. The designed scenario offers a possible new method to investigate the entanglement of multipartite systems of large dimensionality and their application in quantum information processing.

17.
Opt Express ; 24(5): 5039-5044, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092332

RESUMO

We report few-cycle THz pulses emission from a novel organic crystal 2,6-diaminopyridinium-4-nitrophenolate-4-nitrophenol (DAP+NP-NP). The observed amplitude of the THz electric field from a DAP+NP-NP crystal is comparable with that from a ZnTe single crystal under the same optical pumping conditions. Both the waveform and spectra of the THz radiation from DAP+NP-NP are similar to those from ZnTe. We conclude that a high quality DAP+NP-NP crystal would be a high potential candidate in THz generation and applications.

18.
Adv Mater ; 28(5): 876-83, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26640119

RESUMO

The ferroelastic strain coupling in multiferroic heterostructures is explored aiming at novel physical effects and fascinating functionality. Ferroelastic domain walls in manganites induced by a stripe BiFeO3 template can modulate the electronic transfer and sufficiently block the magnetic ordering, creating a vast anisotropy. The findings suggest the great importance of ferroelastic strain engineering in material modifications.

19.
Sci Rep ; 5: 18605, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26690846

RESUMO

We design and demonstrate a flexible, ultrathin and double-sided metamaterial perfect absorber (MPA) at 2.39 terahertz (THz), which enables excellent light absorbance under incidences from two opposite sides. Herein, the MPA is fabricated on a λ0/10.1-thick flexible polyethylene terephthalate substrate of εr = 2.75 × (1 + 0.12i), sandwiched by two identical randomized metallic patterns by our stochastic design process. Such an MPA provides tailored permittivity and permeability to approach the impedance of free space for minimizing reflectance and a great imaginary part of the refractive index for reducing transmittance and finally results in high absorbance. Both experimental measurement and numerical simulation are in a good agreement. The flexible, ultrathin and double-sided MPA significantly differs from traditional quarter-wavelength absorbers and other single-sided perfect absorbers, paving a way toward practical THz applications in thermal emission, sensing and imaging, communications, stealth technique, and even energy harvesting.

20.
Sci Rep ; 5: 18354, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26679958

RESUMO

In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA